scholarly journals Time-Varying Delayed H∞ Control Problem for Nonlinear Systems: A Finite Time Study Using Quadratic Convex Approach

Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 713 ◽  
Author(s):  
Chanikan Emharuethai ◽  
Piyapong Niamsup ◽  
Raja Ramachandran ◽  
Wajaree Weera

In this manuscript, we consider the finite-time H ∞ control for nonlinear systems with time-varying delay. With the assistance of a novel Lyapunov-Krasovskii functional which includes some integral terms, a matrix-based on quadratic convex approach, combined with Wirtinger inequalities and some useful integral inequalities, a sufficient condition of finite-time boundedness is established. A novel feature presents in this paper is that the restriction which is necessary for the upper bound derivative is not restricted to less than 1. Further a H ∞ controller is designed via memoryless state feedback control and a new sufficient conditions for the existence of finite-time H ∞ state feedback for the system are given in terms of linear matrix inequalities (LMIs). At the end, some numerical examples with simulations are given to illustrate the effectiveness of the obtained result.

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
C. Emharuethai ◽  
P. Niamsup

H∞control problem for nonlinear system with time-varying delay is considered by using a set of improved Lyapunov-Krasovskii functionals including some integral terms, and a matrix-based on quadratic convex, combined with Wirtinger's inequalities and some useful integral inequality.H∞controller is designed via memoryless state feedback control and new sufficient conditions for the existence of theH∞state feedback for the system are given in terms of linear matrix inequalities (LMIs). Numerical examples are given to illustrate the effectiveness of the obtained result.


Author(s):  
Mengying Ding ◽  
Yali Dong

This paper is concerned with the problem of robust finite-time boundedness for the discrete-time neural networks with time-varying delays. By constructing an appropriate Lyapunov-Krasovskii functional, we propose the sufficient conditions which ensure the robust finite-time boundedness of the discrete-time neural networks with time-varying delay in terms of linear matrix inequalities. Then the sufficient conditions of robust finite-time stability for the discrete-time neural networks with time-varying delays are given. Finally, a numerical example is presented to illustrate the efficiency of proposed methods.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Guoqi Ma ◽  
Linlin Qin ◽  
Xinghua Liu ◽  
Gang Wu

This paper is concerned with the problem of observed-based event-triggered control for switched linear systems with time-varying delay and exogenous disturbance. First by employing a state observer, an observer-based event-triggered controller is designed to guarantee the finite-time boundedness and finite-time stabilization of the resulting dynamic augmented closed-loop system. Then based on the Lyapunov-like function method and the average dwell time technique, some sufficient conditions are given to ensure the finite-time boundedness and finite-time stabilization, respectively. Furthermore, the lower bound of the minimum interevent interval is proved to be positive, which thus excludes the Zeno behavior of sampling. A numerical example is finally exploited to verify the effectiveness and potential of the achieved control scheme.


2011 ◽  
Vol 2011 ◽  
pp. 1-16 ◽  
Author(s):  
Yali Dong ◽  
Shengwei Mei ◽  
Xueli Wang

The problem of robust exponential stabilization for dynamical nonlinear systems with uncertainties and time-varying delay is considered in the paper. By constructing the proposed Lyapunov-Krasovskii functional approach, continuous state feedback controllers are put forward, and the criteria which guarantee the exponential stabilization of the nonlinear systems with uncertainties and time-varying delay are established in terms of solutions to the standard Riccati differential equations. Furthermore, based on the Lyapunov method and the linear matrix inequality approach, the sufficient conditions of exponential stability for a class of uncertain systems with time-varying delays and nonlinear perturbations are derived. Finally, two numerical examples are given to demonstrate the validity of the results.


2021 ◽  
Vol 20 ◽  
pp. 88-97
Author(s):  
Mengying Ding ◽  
Yali Dong

This paper investigates the problem of robust H∞ observer-based control for a class of discrete-time nonlinear systems with time-varying delays and parameters uncertainties. We propose an observer-based controller. By constructing an appropriate Lyapunov-Krasovskii functional, some sufficient conditions are developed to ensure the closed-loop system is robust asymptotically stable with H∞ performance in terms of the linear matrix inequalities. Finally, a numerical example is given to illustrate the efficiency of proposed methods.


2016 ◽  
Vol 40 (1) ◽  
pp. 191-201 ◽  
Author(s):  
Samah Ben Atia ◽  
Anis Messaoud ◽  
Ridha Ben Abdennour

In this paper, a robust multiobserver is proposed for the state estimation of discrete-time uncertain nonlinear systems with time-varying delay. The designed multiobserver is based on the decoupled multimodel approach. Unlike the classically used multimodel structures, the decoupled multimodel provides a flexibility of modelling. Indeed, the partial models’ structures can be adapted to the complexity of the system in each operating regime, thus the partial models can be with different dimensions. Delay-dependent sufficient conditions for the synthesis of a robust multiobserver against norm-bounded parametric uncertainties and in the presence of measurement noise are established in terms of linear matrix inequalities. A simulation example is given to illustrate the effectiveness of the designed multiobserver.


2010 ◽  
Vol 40-41 ◽  
pp. 103-110
Author(s):  
Jie Jin

This paper is concerned the problem of robust absolute stabilization of time-varying delay systems with admissible perturbation in terms of integral inequality. A linear state-feedback control law is derived for one class of delay systems with sector restriction based on linear matrix inequality (LMI). Especially, this method does not require input terms are absolutely controllable for nonlinear delay systems. Numerical example is used to demonstrate the validity of the proposed method.


2020 ◽  
Vol 42 (12) ◽  
pp. 2191-2197 ◽  
Author(s):  
Piyapong Niamsup ◽  
Vu N Phat

In this paper, the augmented Lyapunov-Krasovskii function approach combining with singular value decomposition method is developed for stabilization of linear descriptor systems with time-varying delay. The delay function is non-differentiable, but continuous and bounded. By introducing a set of improved Lyapunov-Krasovskii functionals we propose delay-dependent sufficient conditions for admissibility of the system in terms of linear matrix inequalities. Then, based on the obtained stability results the problem of stabilization is solved via state feedback controllers, which guarantees that the descriptor closed-loop system is admissible. An numerical example with simulation is provided to show the effectiveness of the theoretical result.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yanke Zhong ◽  
Tefang Chen

The problem of finite-time boundedness for a class of switched linear systems with time-varying delay and external disturbance is investigated. First of all, the multiply Lyapunov function of the system is constructed. Then, based on the Jensen inequality approach and the average dwell time method, the sufficient conditions which guarantee the system is finite-time bounded are given. Finally, an example is employed to verify the validity of the proposed method.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Sreten B. Stojanovic

The problem of finite-time stability for linear discrete time systems with state time-varying delay is considered in this paper. Two finite sum inequalities for estimating weighted norms of delayed states are proposed in order to obtain less conservative stability criteria. By using Lyapunov-Krasovskii-like functional with power function, two sufficient conditions of finite-time stability are proposed and expressed in the form of linear matrix inequalities (LMIs), which are dependent on the minimum and maximum delay bounds. The numerical example is presented to illustrate the applicability of the developed results. It was shown that the obtained results are less conservative than some existing ones in the literature.


Sign in / Sign up

Export Citation Format

Share Document