scholarly journals Novel Stability Criteria of Nonlinear Uncertain Systems with Time-Varying Delay

2011 ◽  
Vol 2011 ◽  
pp. 1-16 ◽  
Author(s):  
Yali Dong ◽  
Shengwei Mei ◽  
Xueli Wang

The problem of robust exponential stabilization for dynamical nonlinear systems with uncertainties and time-varying delay is considered in the paper. By constructing the proposed Lyapunov-Krasovskii functional approach, continuous state feedback controllers are put forward, and the criteria which guarantee the exponential stabilization of the nonlinear systems with uncertainties and time-varying delay are established in terms of solutions to the standard Riccati differential equations. Furthermore, based on the Lyapunov method and the linear matrix inequality approach, the sufficient conditions of exponential stability for a class of uncertain systems with time-varying delays and nonlinear perturbations are derived. Finally, two numerical examples are given to demonstrate the validity of the results.

2021 ◽  
Vol 20 ◽  
pp. 88-97
Author(s):  
Mengying Ding ◽  
Yali Dong

This paper investigates the problem of robust H∞ observer-based control for a class of discrete-time nonlinear systems with time-varying delays and parameters uncertainties. We propose an observer-based controller. By constructing an appropriate Lyapunov-Krasovskii functional, some sufficient conditions are developed to ensure the closed-loop system is robust asymptotically stable with H∞ performance in terms of the linear matrix inequalities. Finally, a numerical example is given to illustrate the efficiency of proposed methods.


2016 ◽  
Vol 40 (1) ◽  
pp. 191-201 ◽  
Author(s):  
Samah Ben Atia ◽  
Anis Messaoud ◽  
Ridha Ben Abdennour

In this paper, a robust multiobserver is proposed for the state estimation of discrete-time uncertain nonlinear systems with time-varying delay. The designed multiobserver is based on the decoupled multimodel approach. Unlike the classically used multimodel structures, the decoupled multimodel provides a flexibility of modelling. Indeed, the partial models’ structures can be adapted to the complexity of the system in each operating regime, thus the partial models can be with different dimensions. Delay-dependent sufficient conditions for the synthesis of a robust multiobserver against norm-bounded parametric uncertainties and in the presence of measurement noise are established in terms of linear matrix inequalities. A simulation example is given to illustrate the effectiveness of the designed multiobserver.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 713 ◽  
Author(s):  
Chanikan Emharuethai ◽  
Piyapong Niamsup ◽  
Raja Ramachandran ◽  
Wajaree Weera

In this manuscript, we consider the finite-time H ∞ control for nonlinear systems with time-varying delay. With the assistance of a novel Lyapunov-Krasovskii functional which includes some integral terms, a matrix-based on quadratic convex approach, combined with Wirtinger inequalities and some useful integral inequalities, a sufficient condition of finite-time boundedness is established. A novel feature presents in this paper is that the restriction which is necessary for the upper bound derivative is not restricted to less than 1. Further a H ∞ controller is designed via memoryless state feedback control and a new sufficient conditions for the existence of finite-time H ∞ state feedback for the system are given in terms of linear matrix inequalities (LMIs). At the end, some numerical examples with simulations are given to illustrate the effectiveness of the obtained result.


2015 ◽  
Vol 742 ◽  
pp. 399-403
Author(s):  
Ya Jun Li ◽  
Jing Zhao Li

This paper investigates the exponential stability problem for a class of stochastic neural networks with leakage delay. By employing a suitable Lyapunov functional and stochastic stability theory technic, the sufficient conditions which make the stochastic neural networks system exponential mean square stable are proposed and proved. All results are expressed in terms of linear matrix inequalities (LMIs). Example and simulation are presented to show the effectiveness of the proposed method.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Kanit Mukdasai

This paper investigates the problem of robust exponential stability for uncertain linear-parameter dependent (LPD) discrete-time system with delay. The delay is of an interval type, which means that both lower and upper bounds for the time-varying delay are available. The uncertainty under consideration is norm-bounded uncertainty. Based on combination of the linear matrix inequality (LMI) technique and the use of suitable Lyapunov-Krasovskii functional, new sufficient conditions for the robust exponential stability are obtained in terms of LMI. Numerical examples are given to demonstrate the effectiveness and less conservativeness of the proposed methods.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
C. Emharuethai ◽  
P. Niamsup

H∞control problem for nonlinear system with time-varying delay is considered by using a set of improved Lyapunov-Krasovskii functionals including some integral terms, and a matrix-based on quadratic convex, combined with Wirtinger's inequalities and some useful integral inequality.H∞controller is designed via memoryless state feedback control and new sufficient conditions for the existence of theH∞state feedback for the system are given in terms of linear matrix inequalities (LMIs). Numerical examples are given to illustrate the effectiveness of the obtained result.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
W. Weera ◽  
P. Niamsup

The problem of exponential stabilization of neutral-type neural networks with various activation functions and interval nondifferentiable and distributed time-varying delays is considered. The interval time-varying delay function is not required to be differentiable. By employing new and improved Lyapunov-Krasovskii functional combined with Leibniz-Newton’s formula, the stabilizability criteria are formulated in terms of a linear matrix inequalities. Numerical examples are given to illustrate and show the effectiveness of the obtained results.


2021 ◽  
Vol 20 ◽  
pp. 312-319
Author(s):  
Meng Liu ◽  
Yali Dong ◽  
Xinyue Tang

This paper is concerned with the problem of robust exponential stabilization for a class of nonlinear uncertain systems with time-varying delays. By using appropriately chosen Lyapunov-Krasovskii functional, together with the Finsler’s lemma, sufficient conditions for exponential stability of nonlinear uncertain systems with time-varying delays are proposed in terms of linear matrix inequality (LMI). Then, novel sufficient conditions are developed to ensure the nonlinear uncertain system with time-varying delay is robust exponentially stabilizable in terms of linear matrix inequality with state feedback control. Finally, a numerical example is given to illustrate the efficiency of proposed methods.


2012 ◽  
Vol 482-484 ◽  
pp. 1881-1885
Author(s):  
Jian Hu Jiang ◽  
Chao Wu ◽  
Yun Wang Ge ◽  
Li Jun Song

The stability control problem is considered for a class of discrete-time T-S fuzzy bilinear system with time-varying delay in both state and input. Based on the parallel distribute compensation (PDC) scheme, some sufficient conditions are derived to guarantee the global asymptotically stability of the overall fuzzy system, which are represented in terms of matrix inequality. The corresponding controller can be obtained by solving a set of linear matrix inequalities. Finally, a simulation example shows that the approach is effective.


Sign in / Sign up

Export Citation Format

Share Document