State feedback stabilization of linear descriptor time-varying delay systems

2020 ◽  
Vol 42 (12) ◽  
pp. 2191-2197 ◽  
Author(s):  
Piyapong Niamsup ◽  
Vu N Phat

In this paper, the augmented Lyapunov-Krasovskii function approach combining with singular value decomposition method is developed for stabilization of linear descriptor systems with time-varying delay. The delay function is non-differentiable, but continuous and bounded. By introducing a set of improved Lyapunov-Krasovskii functionals we propose delay-dependent sufficient conditions for admissibility of the system in terms of linear matrix inequalities. Then, based on the obtained stability results the problem of stabilization is solved via state feedback controllers, which guarantees that the descriptor closed-loop system is admissible. An numerical example with simulation is provided to show the effectiveness of the theoretical result.

2020 ◽  
Vol 37 (4) ◽  
pp. 1218-1236
Author(s):  
V N Phat ◽  
P Niamsup ◽  
N H Muoi

Abstract In this paper, we propose an linear matrix inequality (LMI)-based design method to observer-based control problem of linear descriptor systems with multiple time-varying delays. The delay function can be continuous and bounded but not necessarily differentiable. First, by introducing a new set of improved Lyapunov–Krasovskii functionals that avoid calculating the derivative of the delay function, we obtain new delay-dependent sufficient conditions for guaranteeing the system to be regular, impulse-free and asymptotically stable. Then, based on the derived stability conditions, we design state feedback controllers and observer gains via LMIs, which can be solved numerically in standard computational algorithms. A numerical example with simulation is given to demonstrate the efficiency and validity of the proposed deign.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
C. Emharuethai ◽  
P. Niamsup

H∞control problem for nonlinear system with time-varying delay is considered by using a set of improved Lyapunov-Krasovskii functionals including some integral terms, and a matrix-based on quadratic convex, combined with Wirtinger's inequalities and some useful integral inequality.H∞controller is designed via memoryless state feedback control and new sufficient conditions for the existence of theH∞state feedback for the system are given in terms of linear matrix inequalities (LMIs). Numerical examples are given to illustrate the effectiveness of the obtained result.


2012 ◽  
Vol 241-244 ◽  
pp. 1148-1153 ◽  
Author(s):  
Wei Hua Tian ◽  
Li Xia Li ◽  
Wei Deng ◽  
Yan Zhao

A new guaranteed cost controller design approach for a class of Takagi-Sugeno (T-S) fuzzy descriptor systems with time-varying delay is presented. Based on the fuzzy rules and weights, the less conservative sufficient conditions for the existence of guaranteed cost controllers via state feedback are given in terms of linear matrix inequalities (LMIs). This method includes the interactions of the different subsystems into one matrix. And the design of optimal guaranteed cost controller can be formulated to a convex optimization problem. At last, a numerical example is given to illustrate the effectiveness of the proposed method and the perfect performance of the optimal guaranteed cost controller.


2010 ◽  
Vol 40-41 ◽  
pp. 103-110
Author(s):  
Jie Jin

This paper is concerned the problem of robust absolute stabilization of time-varying delay systems with admissible perturbation in terms of integral inequality. A linear state-feedback control law is derived for one class of delay systems with sector restriction based on linear matrix inequality (LMI). Especially, this method does not require input terms are absolutely controllable for nonlinear delay systems. Numerical example is used to demonstrate the validity of the proposed method.


2014 ◽  
Vol 615 ◽  
pp. 375-381
Author(s):  
Qi Feng Ren ◽  
Cun Che Gao ◽  
Shu Hui Bi

The sliding mode control (SMC) design is discussed for a class of time-varying delay systems which is delay-range-dependent and rate-range-dependent. A novel time-varying nonlinear sliding surface is employed. The choice of nonlinear sliding surface is to change the state matrix of sliding mode system, which can combine the advantages of different conventional linear sliding surfaces. Thus the better transient qualities of system states, i.e., quicker response and smaller overshoot, can be achieved. The sufficient conditions ensuring the asymptotic stability of sliding mode are derived in terms of linear matrix inequalities. The algorithms deciding unknown parameters of the nonlinear sliding surface and the corresponding sliding mode controller are also presented. Finally, A numerical example is given to illustrate the effectiveness of the result here.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 713 ◽  
Author(s):  
Chanikan Emharuethai ◽  
Piyapong Niamsup ◽  
Raja Ramachandran ◽  
Wajaree Weera

In this manuscript, we consider the finite-time H ∞ control for nonlinear systems with time-varying delay. With the assistance of a novel Lyapunov-Krasovskii functional which includes some integral terms, a matrix-based on quadratic convex approach, combined with Wirtinger inequalities and some useful integral inequalities, a sufficient condition of finite-time boundedness is established. A novel feature presents in this paper is that the restriction which is necessary for the upper bound derivative is not restricted to less than 1. Further a H ∞ controller is designed via memoryless state feedback control and a new sufficient conditions for the existence of finite-time H ∞ state feedback for the system are given in terms of linear matrix inequalities (LMIs). At the end, some numerical examples with simulations are given to illustrate the effectiveness of the obtained result.


Author(s):  
Qinghui Du

The problem of adaptive state-feedback stabilization of stochastic nonholonomic systems with an unknown time-varying delay and perturbations is studied in this paper. Without imposing any assumptions on the time-varying delay, an adaptive state-feedback controller is skillfully designed by using the input-state scaling technique and an adaptive backstepping control approach. Then, by adopting the switching strategy to eliminate the phenomenon of uncontrollability, the proposed adaptive state-feedback controller can guarantee that the closed-loop system has an almost surely unique solution for any initial state, and the equilibrium of interest is globally asymptotically stable in probability. Finally, the simulation example shows the effectiveness of the proposed scheme.


2012 ◽  
Vol 2012 ◽  
pp. 1-18
Author(s):  
W. Weera ◽  
P. Niamsup

This paper deals with the problem of stability for a class of Lur’e systems with interval time-varying delay and sector-bounded nonlinearity. The interval time-varying delay function is not assumed to be differentiable. We analyze the global exponential stability for uncertain neutral and Lur’e dynamical systems with some sector conditions. By constructing a set of improved Lyapunov-Krasovskii functional combined with Leibniz-Newton’s formula, we establish some stability criteria in terms of linear matrix inequalities. Numerical examples are given to illustrate the effectiveness of the results.


2015 ◽  
Vol 742 ◽  
pp. 399-403
Author(s):  
Ya Jun Li ◽  
Jing Zhao Li

This paper investigates the exponential stability problem for a class of stochastic neural networks with leakage delay. By employing a suitable Lyapunov functional and stochastic stability theory technic, the sufficient conditions which make the stochastic neural networks system exponential mean square stable are proposed and proved. All results are expressed in terms of linear matrix inequalities (LMIs). Example and simulation are presented to show the effectiveness of the proposed method.


2019 ◽  
Vol 37 (3) ◽  
pp. 831-854
Author(s):  
Ihab Haidar ◽  
Florentina Nicolau ◽  
Jean-Pierre Barbot ◽  
Woihida Aggoune

Abstract This paper deals with the input–output linearization of non-linear time-varying delay systems. We introduce an extension of the Lie derivative for time-varying delay systems and derive sufficient conditions for the existence of a causal and bounded non-linear feedback linearizing the input–output behaviour of the system. Sufficient conditions ensuring the internal stability after output stabilization are also presented. Finally, several examples illustrating our main results are discussed.


Sign in / Sign up

Export Citation Format

Share Document