scholarly journals Central Splitting of A2 Discrete Fourier–Weyl Transforms

Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1828 ◽  
Author(s):  
Jiří Hrivnák ◽  
Mariia Myronova ◽  
Jiří Patera

Two types of bivariate discrete weight lattice Fourier–Weyl transforms are related by the central splitting decomposition. The two-variable symmetric and antisymmetric Weyl orbit functions of the crystallographic reflection group A2 constitute the kernels of the considered transforms. The central splitting of any function carrying the data into a sum of components governed by the number of elements of the center of A2 is employed to reduce the original weight lattice Fourier–Weyl transform into the corresponding weight lattice splitting transforms. The weight lattice elements intersecting with one-third of the fundamental region of the affine Weyl group determine the point set of the splitting transforms. The unitary matrix decompositions of the normalized weight lattice Fourier–Weyl transforms are presented. The interpolating behavior and the unitary transform matrices of the weight lattice splitting Fourier–Weyl transforms are exemplified.

2019 ◽  
Vol 10 (4) ◽  
pp. 769-791 ◽  
Author(s):  
Norbert Ortner ◽  
Peter Wagner

Abstract Several formulas for the eigenvalues $$\lambda _j$$ λ j of the Weyl transforms $$W_\sigma $$ W σ of symbols $$\sigma $$ σ given by radially symmetric distributions are derived. These yield criteria for the boundedness and the compactness, respectively, of the pseudo-differential operators $$W_\sigma .$$ W σ . We investigate some examples by analyzing the asymptotic behavior of $$\lambda _j$$ λ j for $$j\rightarrow \infty $$ j → ∞ .


Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 61
Author(s):  
Adam Brus ◽  
Jiří Hrivnák ◽  
Lenka Motlochová

Explicit links of the multivariate discrete (anti)symmetric cosine and sine transforms with the generalized dual-root lattice Fourier–Weyl transforms are constructed. Exact identities between the (anti)symmetric trigonometric functions and Weyl orbit functions of the crystallographic root systems A1 and Cn are utilized to connect the kernels of the discrete transforms. The point and label sets of the 32 discrete (anti)symmetric trigonometric transforms are expressed as fragments of the rescaled dual root and weight lattices inside the closures of Weyl alcoves. A case-by-case analysis of the inherent extended Coxeter–Dynkin diagrams specifically relates the weight and normalization functions of the discrete transforms. The resulting unique coupling of the transforms is achieved by detailing a common form of the associated unitary transform matrices. The direct evaluation of the corresponding unitary transform matrices is exemplified for several cases of the bivariate transforms.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1018 ◽  
Author(s):  
Tomasz Czyżycki ◽  
Jiří Hrivnák ◽  
Lenka Motlochová

Discrete transforms of Weyl orbit functions on finite fragments of shifted dual root lattices are established. The congruence classes of the dual weight lattices intersected with the fundamental domains of the affine Weyl groups constitute the point sets of the transforms. The shifted weight lattices intersected with the fundamental domains of the extended dual affine Weyl groups form the sets of labels of Weyl orbit functions. The coinciding cardinality of the point and label sets and corresponding discrete orthogonality relations of Weyl orbit functions are demonstrated. The explicit counting formulas for the numbers of elements contained in the point and label sets are calculated. The forward and backward discrete Fourier-Weyl transforms, together with the associated interpolation and Plancherel formulas, are presented. The unitary transform matrices of the discrete transforms are exemplified for the case A 2 .


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1338
Author(s):  
Adam Brus ◽  
Jiří Hrivnák ◽  
Lenka Motlochová

Families of discrete quantum models that describe a free non-relativistic quantum particle propagating on rescaled and shifted dual weight lattices inside closures of Weyl alcoves are developed. The boundary conditions of the presented discrete quantum billiards are enforced by precisely positioned Dirichlet and Neumann walls on the borders of the Weyl alcoves. The amplitudes of the particle’s propagation to neighbouring positions are determined by a complex-valued dual-weight hopping function of finite support. The discrete dual-weight Hamiltonians are obtained as the sum of specifically constructed dual-weight hopping operators. By utilising the generalised dual-weight Fourier–Weyl transforms, the solutions of the time-independent Schrödinger equation together with the eigenenergies of the quantum systems are exactly resolved. The matrix Hamiltonians, stationary states and eigenenergies of the discrete models are exemplified for the rank two cases C2 and G2.


Author(s):  
P.J. Phillips ◽  
J. Huang ◽  
S. M. Dunn

In this paper we present an efficient algorithm for automatically finding the correspondence between pairs of stereo micrographs, the key step in forming a stereo image. The computation burden in this problem is solving for the optimal mapping and transformation between the two micrographs. In this paper, we present a sieve algorithm for efficiently estimating the transformation and correspondence.In a sieve algorithm, a sequence of stages gradually reduce the number of transformations and correspondences that need to be examined, i.e., the analogy of sieving through the set of mappings with gradually finer meshes until the answer is found. The set of sieves is derived from an image model, here a planar graph that encodes the spatial organization of the features. In the sieve algorithm, the graph represents the spatial arrangement of objects in the image. The algorithm for finding the correspondence restricts its attention to the graph, with the correspondence being found by a combination of graph matchings, point set matching and geometric invariants.


2003 ◽  
Vol 40 (3) ◽  
pp. 269-286 ◽  
Author(s):  
H. Nyklová

In this paper we study a problem related to the classical Erdos--Szekeres Theorem on finding points in convex position in planar point sets. We study for which n and k there exists a number h(n,k) such that in every planar point set X of size h(n,k) or larger, no three points on a line, we can find n points forming a vertex set of a convex n-gon with at most k points of X in its interior. Recall that h(n,0) does not exist for n = 7 by a result of Horton. In this paper we prove the following results. First, using Horton's construction with no empty 7-gon we obtain that h(n,k) does not exist for k = 2(n+6)/4-n-3. Then we give some exact results for convex hexagons: every point set containing a convex hexagon contains a convex hexagon with at most seven points inside it, and any such set of at least 19 points contains a convex hexagon with at most five points inside it.


2011 ◽  
Vol 31 (5) ◽  
pp. 1359-1362
Author(s):  
Yan-ping ZHANG ◽  
Juan ZHANG ◽  
Cheng-gang HE ◽  
Wei-cui CHU ◽  
Li-na ZHANG

Sign in / Sign up

Export Citation Format

Share Document