root lattice
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 13)

H-INDEX

9
(FIVE YEARS 2)

Author(s):  
Zhiguo Geng ◽  
Huanzhao Lv ◽  
Zhan Xiong ◽  
Yu-Gui Peng ◽  
Zhaojiang Chen ◽  
...  

Abstract The square-root descendants of higher-order topological insulators were proposed recently, whose topological property is inherited from the squared Hamiltonian. Here we present a three-dimensional (3D) square-root-like sonic crystal by stacking the 2D square-root lattice in the normal (z) direction. With the nontrivial intralayer couplings, the opened degeneracy at the K-H direction induces the emergence of multiple acoustic localized modes, i.e., the extended 2D surface states and 1D hinge states, which originate from the square-root nature of the system. The square-root-like higher order topological states can be tunable and designed by optionally removing the cavities at the boundaries. We further propose a third-order topological corner state in the 3D sonic crystal by introducing the staggered interlayer couplings on each square-root layer, which leads to a nontrivial bulk polarization in the z direction. Our work sheds light on the high-dimensional square-root topological materials, and have the potentials in designing advanced functional devices with sound trapping and acoustic sensing.


2021 ◽  
Vol 54 (9) ◽  
pp. 095202
Author(s):  
Adam Brus ◽  
Jiří Hrivnák ◽  
Lenka Motlochová

Author(s):  
Nazife Ozdes Koca ◽  
Ramazan Koc ◽  
Mehmet Koca ◽  
Abeer Al-Siyabi

The 3D facets of the Delone cells of the root lattice D 6 which tile the 6D Euclidean space in an alternating order are projected into 3D space. They are classified into six Mosseri–Sadoc tetrahedral tiles of edge lengths 1 and golden ratio τ = (1 + 51/2)/2 with faces normal to the fivefold and threefold axes. The icosahedron, dodecahedron and icosidodecahedron whose vertices are obtained from the fundamental weights of the icosahedral group are dissected in terms of six tetrahedra. A set of four tiles are composed from six fundamental tiles, the faces of which are normal to the fivefold axes of the icosahedral group. It is shown that the 3D Euclidean space can be tiled face-to-face with maximal face coverage by the composite tiles with an inflation factor τ generated by an inflation matrix. It is noted that dodecahedra with edge lengths of 1 and τ naturally occur already in the second and third order of the inflations. The 3D patches displaying fivefold, threefold and twofold symmetries are obtained in the inflated dodecahedral structures with edge lengths τ n with n ≥ 3. The planar tiling of the faces of the composite tiles follows the edge-to-edge matching of the Robinson triangles.


2021 ◽  
Vol 109 (1-2) ◽  
pp. 218-230
Author(s):  
V. P. Grishukhin
Keyword(s):  

Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 61
Author(s):  
Adam Brus ◽  
Jiří Hrivnák ◽  
Lenka Motlochová

Explicit links of the multivariate discrete (anti)symmetric cosine and sine transforms with the generalized dual-root lattice Fourier–Weyl transforms are constructed. Exact identities between the (anti)symmetric trigonometric functions and Weyl orbit functions of the crystallographic root systems A1 and Cn are utilized to connect the kernels of the discrete transforms. The point and label sets of the 32 discrete (anti)symmetric trigonometric transforms are expressed as fragments of the rescaled dual root and weight lattices inside the closures of Weyl alcoves. A case-by-case analysis of the inherent extended Coxeter–Dynkin diagrams specifically relates the weight and normalization functions of the discrete transforms. The resulting unique coupling of the transforms is achieved by detailing a common form of the associated unitary transform matrices. The direct evaluation of the corresponding unitary transform matrices is exemplified for several cases of the bivariate transforms.


Author(s):  
Naoto Okubo ◽  
Takao Suzuki

Abstract In this article we formulate a group of birational transformations that is isomorphic to an extended affine Weyl group of type $(A_{2n+1}+A_1+A_1)^{(1)}$ with the aid of mutations and permutations of vertices to a mutation-periodic quiver on a torus. This group provides a class of higher order generalizations of Jimbo–Sakai’s $q$-Painlevé VI equation as translations on a root lattice. Then the known three systems are obtained again: the $q$-Garnier system, a similarity reduction of the lattice $q$-UC hierarchy, and a similarity reduction of the $q$-Drinfeld–Sokolov hierarchy.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1983
Author(s):  
Abeer Al-Siyabi ◽  
Nazife Ozdes Koca ◽  
Mehmet Koca

It is well known that the point group of the root lattice D6 admits the icosahedral group as a maximal subgroup. The generators of the icosahedral group H3, its roots, and weights are determined in terms of those of D6. Platonic and Archimedean solids possessing icosahedral symmetry have been obtained by projections of the sets of lattice vectors of D6 determined by a pair of integers (m1, m2) in most cases, either both even or both odd. Vertices of the Danzer’s ABCK tetrahedra are determined as the fundamental weights of H3, and it is shown that the inflation of the tiles can be obtained as projections of the lattice vectors characterized by the pair of integers, which are linear combinations of the integers (m1, m2) with coefficients from the Fibonacci sequence. Tiling procedure both for the ABCK tetrahedral and the <ABCK> octahedral tilings in 3D space with icosahedral symmetry H3, and those related transformations in 6D space with D6 symmetry are specified by determining the rotations and translations in 3D and the corresponding group elements in D6. The tetrahedron K constitutes the fundamental region of the icosahedral group and generates the rhombic triacontahedron upon the group action. Properties of “K-polyhedron”, “B-polyhedron”, and “C-polyhedron” generated by the icosahedral group have been discussed.


2020 ◽  
pp. 2050021
Author(s):  
Vladimir L. Popov ◽  
Yuri G. Zarhin

We explore whether a root lattice may be similar to the lattice [Formula: see text] of integers of a number field [Formula: see text] endowed with the inner product [Formula: see text], where [Formula: see text] is an involution of [Formula: see text]. We classify all pairs [Formula: see text], [Formula: see text] such that [Formula: see text] is similar to either an even root lattice or the root lattice [Formula: see text]. We also classify all pairs [Formula: see text], [Formula: see text] such that [Formula: see text] is a root lattice. In addition to this, we show that [Formula: see text] is never similar to a positive-definite even unimodular lattice of rank [Formula: see text], in particular, [Formula: see text] is not similar to the Leech lattice. In Appendix B, we give a general cyclicity criterion for the primary components of the discriminant group of [Formula: see text].


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1018 ◽  
Author(s):  
Tomasz Czyżycki ◽  
Jiří Hrivnák ◽  
Lenka Motlochová

Discrete transforms of Weyl orbit functions on finite fragments of shifted dual root lattices are established. The congruence classes of the dual weight lattices intersected with the fundamental domains of the affine Weyl groups constitute the point sets of the transforms. The shifted weight lattices intersected with the fundamental domains of the extended dual affine Weyl groups form the sets of labels of Weyl orbit functions. The coinciding cardinality of the point and label sets and corresponding discrete orthogonality relations of Weyl orbit functions are demonstrated. The explicit counting formulas for the numbers of elements contained in the point and label sets are calculated. The forward and backward discrete Fourier-Weyl transforms, together with the associated interpolation and Plancherel formulas, are presented. The unitary transform matrices of the discrete transforms are exemplified for the case A 2 .


Sign in / Sign up

Export Citation Format

Share Document