scholarly journals An Intelligent Iris Based Chronic Kidney Identification System

Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2066
Author(s):  
Sohail Muzamil ◽  
Tassadaq Hussain ◽  
Amna Haider ◽  
Umber Waraich ◽  
Umair Ashiq ◽  
...  

In recent years, the demand for alternative medical diagnostics of the human kidney or renal is growing, and some of the reasons behind this relate to its non-invasive, early, real-time, and pain-free mechanism. The chronic kidney problem is one of the major kidney problems, which require an early-stage diagnosis. Therefore, in this work, we have proposed and developed an Intelligent Iris-based Chronic Kidney Identification System (ICKIS). The ICKIS takes an image of human iris as input and on the basis of iridology a deep neural network model on a GPU-based supercomputing machine is applied. The deep neural network models are trained while using 2000 subjects that have healthy and chronic kidney problems. While testing the proposed ICKIS on 2000 separate subjects (1000 healthy and 1000 chronic kidney problems), the system achieves iris-based chronic kidney assessment with an accuracy of 96.8%. In the future, we will work to improve our AI algorithm and try data-set cleaning, so that accuracy can be increased by more efficiently learning the features.

Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1514
Author(s):  
Seung-Ho Lim ◽  
WoonSik William Suh ◽  
Jin-Young Kim ◽  
Sang-Young Cho

The optimization for hardware processor and system for performing deep learning operations such as Convolutional Neural Networks (CNN) in resource limited embedded devices are recent active research area. In order to perform an optimized deep neural network model using the limited computational unit and memory of an embedded device, it is necessary to quickly apply various configurations of hardware modules to various deep neural network models and find the optimal combination. The Electronic System Level (ESL) Simulator based on SystemC is very useful for rapid hardware modeling and verification. In this paper, we designed and implemented a Deep Learning Accelerator (DLA) that performs Deep Neural Network (DNN) operation based on the RISC-V Virtual Platform implemented in SystemC in order to enable rapid and diverse analysis of deep learning operations in an embedded device based on the RISC-V processor, which is a recently emerging embedded processor. The developed RISC-V based DLA prototype can analyze the hardware requirements according to the CNN data set through the configuration of the CNN DLA architecture, and it is possible to run RISC-V compiled software on the platform, can perform a real neural network model like Darknet. We performed the Darknet CNN model on the developed DLA prototype, and confirmed that computational overhead and inference errors can be analyzed with the DLA prototype developed by analyzing the DLA architecture for various data sets.


ChemMedChem ◽  
2021 ◽  
Author(s):  
Christoph Grebner ◽  
Hans Matter ◽  
Daniel Kofink ◽  
Jan Wenzel ◽  
Friedemann Schmidt ◽  
...  

2021 ◽  
Author(s):  
Jesus Cano ◽  
Lorenzo Facila ◽  
Philip Langley ◽  
Roberto Zangroniz ◽  
Raul Alcaraz ◽  
...  

Healthcare ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 181 ◽  
Author(s):  
Patricia Melin ◽  
Julio Cesar Monica ◽  
Daniela Sanchez ◽  
Oscar Castillo

In this paper, a multiple ensemble neural network model with fuzzy response aggregation for the COVID-19 time series is presented. Ensemble neural networks are composed of a set of modules, which are used to produce several predictions under different conditions. The modules are simple neural networks. Fuzzy logic is then used to aggregate the responses of several predictor modules, in this way, improving the final prediction by combining the outputs of the modules in an intelligent way. Fuzzy logic handles the uncertainty in the process of making a final decision about the prediction. The complete model was tested for the case of predicting the COVID-19 time series in Mexico, at the level of the states and the whole country. The simulation results of the multiple ensemble neural network models with fuzzy response integration show very good predicted values in the validation data set. In fact, the prediction errors of the multiple ensemble neural networks are significantly lower than using traditional monolithic neural networks, in this way showing the advantages of the proposed approach.


2020 ◽  
Vol 1662 ◽  
pp. 012010
Author(s):  
F Colecchia ◽  
J K Ruffle ◽  
G C Pombo ◽  
R Gray ◽  
H Hyare ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document