scholarly journals The d-Dimensional Cosmological Constant and the Holographic Horizons

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 237
Author(s):  
Artyom V. Yurov ◽  
Valerian A. Yurov

This article is dedicated to establishing a novel approach to the cosmological constant, in which it is treated as an eigenvalue of a certain Sturm–Liouville problem. The key to this approach lies in the proper formulation of physically relevant boundary conditions. Our suggestion in this regard is to utilize the “holographic boundary condition”, under which the cosmological horizon can only bear a natural (i.e., non-fractional) number of bits of information. Under this framework, we study the general d-dimensional problem and derive the general formula for the discrete spectrum of a positive energy density of vacuum. For the particular case of two dimensions, the resultant problem can be analytically solved in the degenerate hypergeometric functions, so it is possible to define explicitly a self-action potential, which determines the fields of matter in the model. We conclude the article by taking a look at the d-dimensional model of a fractal horizon, where the Bekenstein’s formula for the entropy gets replaced by the Barrow entropy. This gives us a chance to discuss a recently realized problem of possible existence of naked singularities in the D≠3 models.

2013 ◽  
Vol 349 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Artyom V. Astashenok ◽  
Emilio Elizalde ◽  
Artyom V. Yurov

2006 ◽  
Vol 11 (1) ◽  
pp. 47-78 ◽  
Author(s):  
S. Pečiulytė ◽  
A. Štikonas

The Sturm-Liouville problem with various types of two-point boundary conditions is considered in this paper. In the first part of the paper, we investigate the Sturm-Liouville problem in three cases of nonlocal two-point boundary conditions. We prove general properties of the eigenfunctions and eigenvalues for such a problem in the complex case. In the second part, we investigate the case of real eigenvalues. It is analyzed how the spectrum of these problems depends on the boundary condition parameters. Qualitative behavior of all eigenvalues subject to the nonlocal boundary condition parameters is described.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Zohreh Zeinalabedini Charandabi ◽  
Hakimeh Mohammadi ◽  
Shahram Rezapour ◽  
Hashem Parvaneh Masiha

AbstractThe Sturm–Liouville differential equation is one of interesting problems which has been studied by researchers during recent decades. We study the existence of a solution for partial fractional Sturm–Liouville equation by using the α-ψ-contractive mappings. Also, we give an illustrative example. By using the α-ψ-multifunctions, we prove the existence of solutions for inclusion version of the partial fractional Sturm–Liouville problem. Finally by providing another example and some figures, we try to illustrate the related inclusion result.


2015 ◽  
Vol 40 (2) ◽  
pp. 273-281 ◽  
Author(s):  
Piotr Kiełczyński ◽  
Marek Szalewski ◽  
Andrzej Balcerzak ◽  
Krzysztof Wieja

AbstractThis paper presents a theoretical study of the propagation behaviour of surface Love waves in nonhomogeneous functionally graded elastic materials, which is a vital problem in acoustics. The elastic properties (shear modulus) of a semi-infinite elastic half-space vary monotonically with the depth (distance from the surface of the material). Two Love wave waveguide structures are analyzed: 1) a nonhomogeneous elastic surface layer deposited on a homogeneous elastic substrate, and 2) a semi-infinite nonhomogeneous elastic half-space. The Direct Sturm-Liouville Problem that describes the propagation of Love waves in nonhomogeneous elastic functionally graded materials is formulated and solved 1) analytically in the case of the step profile, exponential profile and 1cosh2type profile, and 2) numerically in the case of the power type profiles (i.e. linear and quadratic), by using two numerical methods: i.e. a) Finite Difference Method, and b) Haskell-Thompson Transfer Matrix Method.The dispersion curves of phase and group velocity of surface Love waves in inhomogeneous elastic graded materials are evaluated. The integral formula for the group velocity of Love waves in nonhomogeneous elastic graded materials has been established. The results obtained in this paper can give a deeper insight into the nature of Love waves propagation in elastic nonhomogeneous functionally graded materials.


Sign in / Sign up

Export Citation Format

Share Document