scholarly journals Fuzzy Sawi Decomposition Method for Solving Nonlinear Partial Fuzzy Differential Equations

Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1580
Author(s):  
Atanaska Georgieva ◽  
Albena Pavlova

The main goal of this paper is to propose a new decomposition method for finding solutions to nonlinear partial fuzzy differential equations (NPFDE) through the fuzzy Sawi decomposition method (FSDM). This method is a combination of the fuzzy Sawi transformation and Adomian decomposition method. For this purpose, two new theorems for fuzzy Sawi transformation regarding fuzzy partial gH-derivatives are introduced. The use of convex symmetrical triangular fuzzy numbers creates symmetry between the lower and upper representations of the fuzzy solution. To demonstrate the effectiveness of the method, a numerical example is provided.

2014 ◽  
Vol 635-637 ◽  
pp. 1582-1585
Author(s):  
Li Feng Wang ◽  
Yun Peng Ma ◽  
Yong Qiang Yang

In this work we present a computational method for for solving a class of nonlinear Volterra integro-differential equations of fractional order which is based on Adomian Decom-position Method. Convergence analysis is dependable enough to estimate the maximum absolute truncated error of the Adomian series solution. Numerical example is included to demonstrate the validity and applicability of the method.


2015 ◽  
Vol 4 (4) ◽  
pp. 481
Author(s):  
Kekana M.C ◽  
Shatalov M.Y ◽  
Moshokoa S.P

In this paper, Volterra Integro differential equations are solved using the Adomian decomposition method. The solutions are obtained in form of infinite series and compared to Runge-Kutta4 algorithm. The technique is described and illustrated with examples; numerical results are also presented graphically. The software used in this study is mathematica10.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
S. Narayanamoorthy ◽  
T. L. Yookesh

We propose an algorithm of the approximate method to solve linear fuzzy delay differential equations using Adomian decomposition method. The detailed algorithm of the approach is provided. The approximate solution is compared with the exact solution to confirm the validity and efficiency of the method to handle linear fuzzy delay differential equation. To show this proper features of this proposed method, numerical example is illustrated.


2021 ◽  
Vol 20 ◽  
pp. 335-343
Author(s):  
Prapart Pue-On

In this work, an incorporated form of Sadik transform and Adomian decomposition method which is called the Sadik decomposition method is presented. The method is applied to solve a system of nonlinear fractional Volterra integro-differential equations in the convolution form. To avoid collecting the noise terms that lead the method to fail for seeking the solution, the proposed method is modified by selecting a suitable initial solution. The obtained results are expressed in the explicit form of a power series with easily computable terms. In addition, illustrative examples are shown to demonstrate the effectiveness of the method.


Author(s):  
S. ABBASBANDY ◽  
T. ALLAHVIRANLOO

In this work, the Adomian decomposition(AD) method is applied to the Fuzzy system of linear Fredholm integral equations of the second kind(FFIE). First the crisp Fredholm integral equation is solved by AD method and then the crisp solution is fuzzified by extension principle. The proposed algorithm is illustrated by solving a numerical example.


Sign in / Sign up

Export Citation Format

Share Document