Numerical Solution of Nonlinear Volterra Integro-Differential Equations of Fractional Order by Using Adomian Decomposition Method

2014 ◽  
Vol 635-637 ◽  
pp. 1582-1585
Author(s):  
Li Feng Wang ◽  
Yun Peng Ma ◽  
Yong Qiang Yang

In this work we present a computational method for for solving a class of nonlinear Volterra integro-differential equations of fractional order which is based on Adomian Decom-position Method. Convergence analysis is dependable enough to estimate the maximum absolute truncated error of the Adomian series solution. Numerical example is included to demonstrate the validity and applicability of the method.

2021 ◽  
Vol 13 (2) ◽  
pp. 101
Author(s):  
Abdoul wassiha NEBIE ◽  
Frederic BERE ◽  
Bakari ABBO ◽  
Youssouf PARE

In this paper, we propose the solution of some nonlinear partial differential equations of  fractional order that modeled diffusion, convection and reaction problems. For the solution of these equations we will use the SBA method which is a method based on the combination of the Adomian Decomposition Method (ADM), the Picard's principle  and the method of successive approximations.   


2021 ◽  
Vol 13 (3) ◽  
pp. 715-732
Author(s):  
A. Devi ◽  
M. Jakhar

In this work, a modified decomposition method namely Sumudu-Adomian Decomposition Method (SADM) is implemented to find the exact and approximate solutions of fractional order telegraph equations. The derivatives of fractional-order are expressed in terms of caputo operator. Some numerical examples are illustrated to examine the efficiency of the proposed technique. Solutions of fractional order telegraph equations are obtained in the form of a series solution. It is observed that the solutions of fractional order telegraph equations converge towards the solution of an integer-order problem, which confirmed the reliability of the suggested method.


Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 335 ◽  
Author(s):  
Rasool Shah ◽  
Hassan Khan ◽  
Muhammad Arif ◽  
Poom Kumam

In the present article, we related the analytical solution of the fractional-order dispersive partial differential equations, using the Laplace–Adomian decomposition method. The Caputo operator is used to define the derivative of fractional-order. Laplace–Adomian decomposition method solutions for both fractional and integer orders are obtained in series form, showing higher convergence of the proposed method. Illustrative examples are considered to confirm the validity of the present method. The fractional order solutions that are convergent to integer order solutions are also investigated.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Umesh Umesh ◽  
Manoj Kumar

Purpose The purpose of this paper is to obtain the highly accurate numerical solution of Lane–Emden-type equations using modified Adomian decomposition method (MADM) for unequal step-size partitions. Design/methodology/approach First, the authors describe the standard Adomian decomposition scheme and the Adomian polynomials for solving nonlinear differential equations. After that, for the fast calculation of the Adomian polynomials, an algorithm is presented based on Duan’s corollary and Rach’s rule. Then, MADM is discussed for the unequal step-size partitions of the domain, to obtain the numerical solution of Lane–Emden-type equations. Moreover, convergence analysis and an error bound for the approximate solution are discussed. Findings The proposed method removes the singular behaviour of the problems and provides the high precision numerical solution in the large effective region of convergence in comparison to the other existing methods, as shown in the tested examples. Originality/value Unlike the other methods, the proposed method does not require linearization or perturbation to obtain an analytical and numerical solution of singular differential equations, and the obtained results are more physically realistic.


2016 ◽  
Vol 12 (8) ◽  
pp. 6530-6544
Author(s):  
Mohamed S M. Bahgat

Aim of the paper is to investigate applications of Laplace Adomian Decomposition Method (LADM) on nonlinear physical problems. Some coupled system of non-linear partial differential equations (NLPDEs) are considered and solved numerically using LADM. The results obtained by LADM are compared with those obtained by standard and modified Adomian Decomposition Methods. The behavior of the numerical solution is shown through graphs. It is observed that LADM is an effective method with high accuracy with less number of components.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
I. L. El-Kalla ◽  
E. M. Mohamed ◽  
H. A. A. El-Saka

AbstractIn this paper, we apply an accelerated version of the Adomian decomposition method for solving a class of nonlinear partial differential equations. This version is a smart recursive technique in which no differentiation for computing the Adomian polynomials is needed. Convergence analysis of this version is discussed, and the error of the series solution is estimated. Some numerical examples were solved, and the numerical results illustrate the effectiveness of this version.


2019 ◽  
Vol 15 (1) ◽  
pp. 5-18
Author(s):  
D. Rani ◽  
V. Mishra

Abstract In this paper, an effectual and new modification in Laplace Adomian decomposition method based on Bernstein polynomials is proposed to find the solution of nonlinear Volterra integral and integro-differential equations. The performance and capability of the proposed idea is endorsed by comparing the exact and approximate solutions for three different examples on Volterra integral, integro-differential equations of the first and second kinds. The results shown through tables and figures demonstrate the accuracy of our method. It is concluded here that the non orthogonal polynomials can also be used for Laplace Adomian decomposition method. In addition, convergence analysis of the modified technique is also presented.


2009 ◽  
Vol 19 (01) ◽  
pp. 339-347 ◽  
Author(s):  
DONATO CAFAGNA ◽  
GIUSEPPE GRASSI

This Letter analyzes the hyperchaotic dynamics of the fractional-order Rössler system from a time-domain point of view. The approach exploits the Adomian decomposition method (ADM), which generates series solution of the fractional differential equations. A remarkable finding of the Letter is that hyperchaos occurs in the fractional Rössler system with order as low as 3.12. This represents the lowest order reported in literature for any hyperchaotic system studied so far.


Sign in / Sign up

Export Citation Format

Share Document