scholarly journals Electron-Acoustic (Un)Modulated Structures in a Plasma Having (r, q)-Distributed Electrons: Solitons, Super Rogue Waves, and Breathers

Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2029
Author(s):  
Wedad Albalawi ◽  
Rabia Jahangir ◽  
Waqas Masood ◽  
Sadah A. Alkhateeb ◽  
Samir A. El-Tantawy

The propagation of electron-acoustic waves (EAWs) in an unmagnetized plasma, comprising (r,q)-distributed hot electrons, cold inertial electrons, and stationary positive ions, is investigated. Both the unmodulated and modulated EAWs, such as solitary waves, rogue waves (RWs), and breathers are discussed. The Sagdeev potential approach is employed to determine the existence domain of electron acoustic solitary structures and study the perfectly symmetric planar nonlinear unmodulated structures. Moreover, the nonlinear Schrödinger equation (NLSE) is derived and its modulated solutions, including first order RWs (Peregrine soliton), higher-order RWs (super RWs), and breathers (Akhmediev breathers and Kuznetsov–Ma soliton) are presented. The effects of plasma parameters and, in particular, the effects of spectral indices r and q, of distribution functions on the characteristics of both unmodulated and modulated EAWs, are examined in detail. In a limited cases, the (r,q) distribution is compared with Maxwellian and kappa distributions. The present investigation may be beneficial to comprehend and predict the modulated and unmodulated electron acoustic structures in laboratory and space plasmas.

2003 ◽  
Vol 10 (1/2) ◽  
pp. 87-92 ◽  
Author(s):  
R. Pottelette ◽  
R. A. Treumann ◽  
M. Berthomier ◽  
J. Jasperse

Abstract. The auroral kilometric radiation (AKR) consists of a large number of fast drifting elementary radiation events that have been interpreted as travelling electron holes resulting from the nonlinear evolution of electron-acoustic waves. The elementary radiation structures sometimes become reflected or trapped in slowly drifting larger structures where the parallel electric fields are located. These latter features have spectral frequency drifts which can be interpreted in terms of the propagation of shock-like disturbances along the auroral field line at velocities near the ion-acoustic speed. The amplitude, speed, and shock width of such localized ion-acoustic shocks are determined here in the fluid approximation from the Sagdeev potential, assuming realistic plasma parameters. It is emphasized that the electrostatic potentials of such nonlinear structures contribute to auroral acceleration.


2019 ◽  
Vol 7 (2) ◽  
pp. 81-92
Author(s):  
Ranjit K Kalita ◽  
Jnanjyoti Sarma

In multicomponent dusty plasma, the Sagdeev Potential (SP) approach is employed to formulate the Energy Equation for arbitrary amplitude dust acoustic waves (DAWs), where an amount of electrons is trapped in potential well. The dependence of amplitude and width of the solitons of Sagdeev Potential on plasma parameters is widely discussed. The range of Mach number has determined for solitary waves (SWs) with the help of critical Mach number. The solution of the Energy Equation obtained, has been discussed by expanding the expression for SP in the higher terms of φ . The different solutions of Energy Equation give us SWs, breakable waves, collapsible waves and SWs with spiky and explosive nature. The role of temperature ratio on the transformation of SWs to collapsible waves is discussed. With the help of standard values of plasma parameters relevant to such plasma environment, the results so obtained, are discussed. These results may help us to explain the nature of SWs in different astrophysical situations.


2016 ◽  
Vol 8 (1) ◽  
pp. 64 ◽  
Author(s):  
A. M. El-Hanbaly ◽  
E. K. El-Shewy ◽  
A. I. Kassem ◽  
H. F. Darweesh

The nonlinear properties of small amplitude electron-acoustic ( EA) solitary and shock waves in a homogeneous system of unmagnetized collisionless plasma consisted of a cold electron fluid and superthermal hot electrons obeying superthermal distribution, and stationary ions have been investigated. A reductive perturbation method was employed to obtain the Kadomstev-Petviashvili-Burgers (KP-Brugers) equation. Some solutions of physical interest are obtained. These solutions are related to soliton, monotonic and oscillatory shock waves and their behaviour are shown graphically. The formation of these solutions depends crucially on the value of the Burgers term and the plasma parameters as well. By using the tangent hyperbolic (tanh) method, another interesting type of solution which is a combination between shock and soliton waves is obtained . The topology of phase portrait and potential diagram of the KP-Brugers equation is investigated.The advantage of using this method is that one can predict different classes of the travelling wave solutions according to different phase orbits. The obtained results may be helpful in better understanding of waves propagation in various space plasma environments as well as in inertial confinement fusion laboratory plasmas.


2021 ◽  
Vol 76 (4) ◽  
pp. 329-347
Author(s):  
Swarniv Chandra ◽  
Chinmay Das ◽  
Jit Sarkar

Abstract In this paper we have studied the gradual evolution of stationary formations in electron acoustic waves at a finite temperature quantum plasma. We have made use of Quantum hydrodynamics model equations and obtained the KdV-Burgers equation. From here we showed how the amplitude modulated solitons evolve from double layer structures through shock fronts and ultimately converging into solitary structures. We have studied the various parametric influences on such stationary structure and also showed how the gradual variations of these parameter affect the transition from one form to another. The results thus obtained will help in the generation and structure of the structures in their respective domain. Much of the experiments on dense plasma will benefit from the parametric study. Further we have studied amplitude modulation followed by a detailed study on chaos.


2000 ◽  
Vol 105 (A6) ◽  
pp. 12919-12927 ◽  
Author(s):  
D. Schriver ◽  
M. Ashour-Abdalla ◽  
V. Sotnikov ◽  
P. Hellinger ◽  
V. Fiala ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document