scholarly journals Vibration Localization and Anti-Localization of Nonlinear Multi-Support Beams with Support Periodicity Defect

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2234
Author(s):  
Zu-Guang Ying ◽  
Yi-Qing Ni

A response analysis method for nonlinear beams with spatial distribution parameters and non-periodic supports was developed. The proposed method is implemented in four steps: first, the nonlinear partial differential equation of the beams is transformed into linear partial differential equations with space-varying parameters by using a perturbation method; second, the space-varying parameters are separated into a periodic part and a non-periodic part describing the periodicity defect, and the linear partial differential equations are separated into equations for the periodic and non-periodic parts; third, the equations are converted into ordinary differential equations with multiple modes coupling by using the Galerkin method; fourth, the equations are solved by using a harmonic balance method to obtain vibration responses, which are used to discover dynamic characteristics including the amplitude–frequency relation and spatial mode. The proposed method considers multiple vibration modes in the response analysis of nonlinear non-periodic structures and accounts for mode-coupling effects resulting from structural nonlinearity and parametric non-periodicity. Thus, it can handle nonlinear non-periodic structures with a high parameter-varying wave in wide frequency vibration. In numerical studies, a nonlinear beam with non-periodic supports (resulting in non-periodic distribution parameters or periodicity defect) under harmonic excitations was explored using the proposed method, which revealed some new dynamic response characteristics of this kind of structure and the influences of non-periodic parameters. The characteristics include remarkable variation in frequency response and spatial mode, and in particular, vibration localization and anti-localization. The results have potential applications in vibration control and the support damage detection of nonlinear structures with non-periodic supports.

2019 ◽  
Vol 26 (13-14) ◽  
pp. 1260-1272
Author(s):  
Zu-Guang Ying ◽  
Yi-Qing Ni

A multimode perturbation method for frequency response analysis of nonlinearly vibrational beams with periodic distribution parameters is proposed. The partial differential equation with spatial varying parameters for nonlinear vibration of beams with periodic parameters under harmonic excitations is derived. The procedure of the multimode perturbation method includes three main steps: first, the nonlinear partial differential equation is transformed into linear partial differential equations with varying parameters by applying perturbation method; second, the linear partial differential equations are transformed into ordinary differential equations with multimode coupling by applying Galerkin method, where multiple vibration modes of the beams are used and the equations are suitable to nonlinear vibration of periodic structures with high parameter-varying wave in wide frequency band; third, the ordinary differential equations are solved by applying harmonic balance method to obtain vibration response of the nonlinear periodic beam, which is used for characteristics analysis of frequency response and spatial mode. Furthermore, the stability problem of nonlinear harmonic vibration as multidegree-of-freedom system with periodic time-varying parameters is solved by applying direct eigenvalue analysis approach. The proposed method can incorporate multiple vibration modes into response analysis of nonlinear periodic structures and consider mode-coupling effects due to structural nonlinearity and parametric periodicity. Finally, a nonlinear beam with periodic supports under harmonic excitations is studied. Numerical results on frequency response of the beam are given to illustrate an application of the proposed method, new frequency response characteristics, and influences of periodic parameters on structural response. The results have potential application to nonlinear structural vibration control and support damage detection of nonlinear structures with periodic supports.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Stegliński

Abstract The aim of this paper is to extend results from [A. Cañada, J. A. Montero and S. Villegas, Lyapunov inequalities for partial differential equations, J. Funct. Anal. 237 (2006), 1, 176–193] about Lyapunov-type inequalities for linear partial differential equations to nonlinear partial differential equations with 𝑝-Laplacian with zero Neumann or Dirichlet boundary conditions.


1950 ◽  
Vol 17 (4) ◽  
pp. 377-380
Author(s):  
R. D. Mindlin ◽  
L. E. Goodman

Abstract A procedure is described for extending the method of separation of variables to the solution of beam-vibration problems with time-dependent boundary conditions. The procedure is applicable to a wide variety of time-dependent boundary-value problems in systems governed by linear partial differential equations.


Sign in / Sign up

Export Citation Format

Share Document