scholarly journals Modeling of Cross Work Hardening and Apparent Normality Loss after Biaxial–Shear Loading Path Change

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 142
Author(s):  
Yanfeng Yang ◽  
Cyrille Baudouin ◽  
Tudor Balan

The specific loading-path change during sheet metal forming may lead to some abnormal deformation phenomena. Two-stage orthogonal loading paths without elastic unloading have revealed a phenomenon of apparent loss of normality, further modeled in the literature by non-normality theories. In this paper, a particular orthogonal strain-path change is investigated using the Teodosiu–Hu hardening rule within an associated plasticity framework. The results indicate that cross work-hardening has a significant contribution to the apparent loss of normality and subsequent asymmetric yield surface evolution. Detailed contributions of the model’s ingredients and features are clarified. The developed material model is intended for sheet metal forming simulation applications.

2007 ◽  
Vol 2007.15 (0) ◽  
pp. 231-232
Author(s):  
Takayuki HAMA ◽  
Cristian TEODOSIU ◽  
Akitake MAKINOUCHI ◽  
Hirohiko TAKUDA

2011 ◽  
Vol 347-353 ◽  
pp. 3939-3945
Author(s):  
Jin Yan Wang ◽  
Ji Xian Sun

In most FEM codes, the isotropic-elastic & transversely anisotropic-elastoplastic model using Hill's yield function has been widely adopted in 3D shell elements (modified to meet the plane stress condition) and 3D solid elements. However, when the 4-node quadrilateral plane strain or axisymmetric element is used for 2D sheet metal forming simulation, the above transversely anisotropic Hill model is not available in some FEM code like Ls-Dyna. A novel approach for explicit analysis of transversely anisotropic 2D sheet metal forming using 6-component Barlat yield function is elaborated in detail in this paper, the related formula between the material anisotropic coefficients in Barlat yield function and the Lankford parameters are derived directly. Numerical 2D results obtained from the novel approach fit well with the 3D solution .


2006 ◽  
Vol 42 (13) ◽  
pp. 1137-1149 ◽  
Author(s):  
M.P.L. Parente ◽  
R.A. Fontes Valente ◽  
R.M. Natal Jorge ◽  
R.P.R. Cardoso ◽  
R.J. Alves de Sousa

2016 ◽  
Vol 734 ◽  
pp. 032128
Author(s):  
Vicente Mataix ◽  
Riccardo Rossi ◽  
Eugenio Oñate ◽  
Fernando G. Flores

2008 ◽  
Vol 2 (1) ◽  
pp. 68-80 ◽  
Author(s):  
Takayuki HAMA ◽  
Masato TAKAMURA ◽  
Akitake MAKINOUCHI ◽  
Cristian TEODOSIU ◽  
Hirohiko TAKUDA

2021 ◽  
Author(s):  
Peter Essig ◽  
Mathias Liewald ◽  
Maximilian Burkart ◽  
Maxim Beck

Shortened product development processes in automotive industry combined with the upcoming lack of experts do challenge sheet metal part production fundamentally. Tryout time and manufacturing costs of large forming dies today are significantly influenced by their digitally supported engineering. The forming process by such tools is beside other influences is affected by elastic deformations of forming dies and press structure as well as contact areas between die and sheet metal part. In deep drawing such contact areas are influenced by the blank properties and the flange behavior in terms of thickening and thinning. Recent developments in sheet metal forming simulation do consider advanced friction models and structural modeling of die and press components improving simulation accuracy. Nevertheless thinning or thickening of sheet metal results into localized surface pressure distribution during deep drawing. For this reason, it is not sufficient to use the currently common practice of homogeneous surface pressure distribution in sheet metal forming simulation. In this respect, this paper presents a numerical approach for consideration of straining effects in the sheet metal part during forming operation. For this purpose, a systematic process improvement was developed in this paper to identify contact areas via a numeric simulation parameter. Validating the numerical investigation, a rectangle cup die is used, considering major strain. The main results of this contribution for that reason show how simulated contact areas can be estimated by reverse engineering of real forming parts. Hereby straining based contact areas lead to a novel contact area design in process planning, resulting in efficient die tryout.


Sign in / Sign up

Export Citation Format

Share Document