scholarly journals On Distributed Denial of Service Current Defense Schemes

Technologies ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 19 ◽  
Author(s):  
Seth Kotey ◽  
Eric Tchao ◽  
James Gadze

Distributed denial of service (DDoS) attacks are a major threat to any network-based service provider. The ability of an attacker to harness the power of a lot of compromised devices to launch an attack makes it even more complex to handle. This complexity can increase even more when several attackers coordinate to launch an attack on one victim. Moreover, attackers these days do not need to be highly skilled to perpetrate an attack. Tools for orchestrating an attack can easily be found online and require little to no knowledge about attack scripts to initiate an attack. Studies have been done severally to develop defense mechanisms to detect and defend against DDoS attacks. As defense schemes are designed and developed, attackers are also on the move to evade these defense mechanisms and so there is a need for a continual study in developing defense mechanisms. This paper discusses the current DDoS defense mechanisms, their strengths and weaknesses.

2021 ◽  
Vol 4 (1) ◽  
pp. 81-94
Author(s):  
Fahad Alatawi

Distributed Denial of Service (DDoS) remains a big concern in Cybersecurity. DDoS attacks are implemented to prevent legitimate users from getting access to services. The attackers make use of multiple hosts that have been compromised (i.e., Botnets) to organize a large-scale attack on targets. Developing an effective defensive mechanism against existing and potential DDoS attacks remains a strong desire in the cybersecurity research community. However, development of effective mechanisms or solutions require adequate evaluation of existing defense mechanism and a critical analysis of how these methods have been implemented in preventing, detecting, and responding to DDoS attacks. This paper adopted a systematic review method to critically analyze the existing mechanisms. The review of existing literature helped classify the defense mechanism into four categories: source-based, core-router, victim-based, and distributed systems. A qualitative analysis was used to exhaustively evaluate these defense mechanisms and determine their respective effectiveness. The effectiveness of the defense mechanisms was evaluated on six key parameters: coverage, implementation, deployment, detection accuracy, response mechanism, and robustness. The comparative analysis reviewed the shortcomings and benefits of each mechanism. The evaluation determined that victim-based defense mechanisms have a high detection accuracy but is associated with massive collateral as the detection happens when it is too late to protect the system. On the other hand, whereas stopping an attack from the source-end is ideal, detection accuracy at this point is too low as it is hard to differentiate legitimate and malicious traffic. The effectiveness of the core-based defense systems is not ideal because the routers do not have enough CPU cycles and memory to profile the traffic. Distributed defense mechanisms are effective as components can be spread out across the three locations in a way that takes advantage of each location. The paper also established that the rate-limiting response mechanism is more effective than packet filtering method because it does not restrict legitimate traffic. The analysis revealed that there is no single defense mechanism that offers complete protection against DDoS attacks but concludes that the best defense mechanism is the use of distributed defense because it ensures that defense components are placed on all locations.


2018 ◽  
Vol 10 (2) ◽  
pp. 58-74 ◽  
Author(s):  
Kavita Sharma ◽  
B. B. Gupta

This article describes how in the summer of 1999, the Computer Incident Advisory Capability first reported about Distributed Denial of Service (DDoS) attack incidents and the nature of Denial of Service (DoS) attacks in a distributed environment that eliminates the availability of resources or data on a computer network. DDoS attack exhausts the network resources and disturbs the legitimate user. This article provides an explanation on DDoS attacks and nature of these attacks against Smartphones and Wi-Fi Technology and presents a taxonomy of various defense mechanisms. The smartphone is chosen for this study, as they have now become a necessity rather than a luxury item for the common people.


Author(s):  
Rochak Swami ◽  
Mayank Dave ◽  
Virender Ranga ◽  
Nikhil Tripathi ◽  
Abhijith Kalayil Shaji ◽  
...  

Distributed denial of service (DDoS) attacks have been a matter of serious concern for network administrators in the last two decades. These attacks target the resources such as memory, CPU cycles, and network bandwidth in order to make them unavailable for the benign users, thereby violating availability, one of the components of cyber security. With the existence of DDoS-as-a-service on internet, DDoS attacks have now become more lucrative for the adversaries to target a potential victim. In this work, the authors focus on countering DDoS attacks using one of the latest technologies called blockchain. In inception phase, utilizing blockchain for countering DDoS attacks has proved to be quite promising. The authors also compare existing blockchain-based defense mechanisms to counter DDoS attacks and analyze them. Towards the end of the work, they also discuss possible future research directions in this domain.


Author(s):  
Georg Disterer ◽  
Ame Alles ◽  
Axel Hervatin

Since denial-of-service (DoS) attacks are a major threat to e-commerce, waves of DoS attacks against prominent Web pages gained wide publicity. Typically DoS attacks target Web sites with bogus requests for data in order to slow or block legitimate users from accessing services. In recent years, distributed denial-of-service (DDoS) attacks have been used, which expand the vulnerability of Web sites. Attackers use hundreds or thousands of compromised systems in order to harm commercial Web sites. Attackers use different ways to harm their victims. They manipulate the target networks or target server servers directly by using lacks of protocols and standards to force failures and shut-downs. Or, they try to deplete resources like bandwidth, memory, or processing capacities. Attackers try to hinder or interfere with legitimate users with both strategies. Damages from DDoS attacks can range from inconvenience for legitimate users and customers to a lack of reliability for the site and—finally—to a shutdown of the server and some delay until web services are continued. This is a severe threat for all companies involved in e-commerce, and managing that risk is important to offer secure and reliable services. Therefore, management must take actions of prevention, detection and mitigation in order to protect their Web services.


In a network environment, Distributed Denial of Service (DDoS) attacks eemploys a network or server is unavailable to its normal users. Application-layer Distributed Denial of Service (App-DDoS) attacks are serious issues for the webserver itself. The multitude and variety of such attacks and defense approaches are overwhelming. This paper here follows, we analyze the different defense mechanisms for application-layer DDoS attacks and proposes a new approach to defend using machine learning.


Author(s):  
Akhil K.M ◽  
Rahul C.T ◽  
Athira V.B

Denial of Service (DoS) attacks is one of the major threats to Internet sites and one of the major security problems Internet faces today. The nature of threats caused by Distributed Denial of Service (DDoS) attacks on networks. With little or no warning, a DDoS attack could easily destroy its victim's communication and network resources in a short period of time. This paper outlines the problem of DDoS attacks and developing a classification of DDoS attacks and DDoS defense mechanisms. Important features of each attack and defense system category are described and advantages and disadvantages of each proposed scheme are outlined. The goal of the paper is to set a certain order of existence methods of attack and defense mechanisms, for the better understanding DDoS attacks can be achieved with more effective methods and means of self-defense can be developed.


Author(s):  
Kavita Sharma ◽  
B. B. Gupta

This article describes how in the summer of 1999, the Computer Incident Advisory Capability first reported about Distributed Denial of Service (DDoS) attack incidents and the nature of Denial of Service (DoS) attacks in a distributed environment that eliminates the availability of resources or data on a computer network. DDoS attack exhausts the network resources and disturbs the legitimate user. This article provides an explanation on DDoS attacks and nature of these attacks against Smartphones and Wi-Fi Technology and presents a taxonomy of various defense mechanisms. The smartphone is chosen for this study, as they have now become a necessity rather than a luxury item for the common people.


Author(s):  
Amit Sharma

Distributed Denial of Service attacks are significant dangers these days over web applications and web administrations. These assaults pushing ahead towards application layer to procure furthermore, squander most extreme CPU cycles. By asking for assets from web benefits in gigantic sum utilizing quick fire of solicitations, assailant robotized programs use all the capacity of handling of single server application or circulated environment application. The periods of the plan execution is client conduct checking and identification. In to beginning with stage by social affair the data of client conduct and computing individual user’s trust score will happen and Entropy of a similar client will be ascertained. HTTP Unbearable Load King (HULK) attacks are also evaluated. In light of first stage, in recognition stage, variety in entropy will be watched and malevolent clients will be recognized. Rate limiter is additionally acquainted with stop or downsize serving the noxious clients. This paper introduces the FAÇADE layer for discovery also, hindering the unapproved client from assaulting the framework.


Sign in / Sign up

Export Citation Format

Share Document