scholarly journals Synthesis and Decontamination Effect on Chemical and Biological Agents of Benzoxonium-Like Salts

Toxics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 222
Author(s):  
Aneta Markova ◽  
Michaela Hympanova ◽  
Marek Matula ◽  
Lukas Prchal ◽  
Radek Sleha ◽  
...  

Benzoxonium chloride belongs to the group of quaternary ammonium salts, which have been widely used for decades as disinfectants because of their high efficacy, low toxicity, and thermal stability. In this study, we have prepared the C10-C18 set of benzoxonium-like salts to evaluate the effect of their chemical and biological decontamination capabilities. In particular, biocidal activity against a panel of bacterial strains including Staphylococcus aureus in biofilm form was screened. In addition, the most promising compounds were successfully tested against Francisella tularensis as a representative of potential biological warfare agents. From a point of view of chemical warfare protection, the efficiency of BOC-like compounds to degrade the organophosphate simulant fenitrothion was examined. Notwithstanding that no single compound with universal effectiveness was identified, a mixture of only two compounds from this group would be able to satisfactorily cover the proposed decontamination spectrum. In addition, the compounds were evaluated for their cytotoxicity as a basic safety parameter for potential use in practice. In summary, the dual effect on chemical and biological agents of benzoxonium-like salts offer attractive potential as active components of decontamination mixtures in the case of a terrorist threat or chemical or biological accidents.

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1442
Author(s):  
Dorota Kowalczuk ◽  
Agata Gładysz ◽  
Monika Pitucha ◽  
Daniel M. Kamiński ◽  
Agnieszka Barańska ◽  
...  

Bacterial strains become resistant to almost all classes of antibiotics, which makes it necessary to look for new substitutes. The non-absorbable ciprofloxacin–biguanide bismuth complex, used locally, may be a good alternative to a conventional therapy. The purpose of this study was to study the structure of the proposed ciprofloxacin (CIP) -bismuth(III)—chlorhexidine (CHX) composite (CIP-Bi-CHX). The spectroscopic techniques such as UV-VIS (ultraviolet-visible) spectroscopy, FTIR (Fourier-transform infrared) spectroscopy and NMR (Nuclear Magnetic Resonance) spectroscopy were used for structure characterization of the hybrid compound. The performed analysis confirmed the presence of the two active components—CIP and CHX and revealed the possible coordination sites of the ligands with bismuth ion in the metallo-organic structure. Spectroscopic study showed that the complexation between Bi(III) and CIP occurs through the carboxylate and ketone groups of the quinolone ring, while CHX combines with the central ion via the biguanide moieties.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Hilsamar Félix-Rivera ◽  
Roxannie González ◽  
Gabriela Del Mar Rodríguez ◽  
Oliva M. Primera-Pedrozo ◽  
Carlos Ríos-Velázquez ◽  
...  

The development of techniques that could be useful in fields other than biological warfare agents countermeasures such as medical diagnostics, industrial microbiology, and environmental applications have become a very important subject of research. Raman spectroscopy can be used in near field or at long distances from the sample to obtain fingerprinting information of chemical composition of microorganisms. In this research, biochemical components of the cell wall and endospores of Bacillus thuringiensis (Bt) were identified by surface-enhanced Raman scattering (SERS) spectroscopy using silver (Ag) nanoparticles (NPs) reduced by hydroxylamine and borohydride capped with sodium citrate. Activation of “hot spots”, aggregation and surface charge modification of the NPs, was studied and optimized to obtain signal enhancements from Bt by SERS. Slight aggregation of the NPs as well as surface charge modification to a more acidic ambient was induced using small-size borohydride-reduced NPs in the form of metallic suspensions aimed at increasing the Ag NP-Bt interactions. Hydroxylamine-reduced NPs required slight aggregation and no pH modifications in order to obtain high spectral quality results in bringing out SERS signatures of Bt.


Author(s):  
ALAN C. SAMUELS ◽  
DWIGHT L. WOOLARD ◽  
TATIANA GLOBUS ◽  
BORIS GELMONT ◽  
ELLIOTT R. BROWN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document