scholarly journals In Silico Modeling of Spirolides and Gymnodimines: Determination of S Configuration at Butenolide Ring Carbon C-4

Toxins ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 685
Author(s):  
Christian Zurhelle ◽  
Tilmann Harder ◽  
Urban Tillmann ◽  
Jan Tebben

Only few naturally occurring cyclic imines have been fully structurally elucidated or synthesized to date. The configuration at the C-4 carbon plays a pivotal role in the neurotoxicity of many of these metabolites, for example, gymnodomines (GYMs) and spirolides (SPXs). However, the stereochemistry at this position is not accessible by nuclear Overhauser effect—nuclear magnetic resonance spectroscopy (NOE-NMR) due to unconstrained rotation of the single carbon bond between C-4 and C-5. Consequently, the relative configuration of GYMs and SPXs at C-4 and its role in protein binding remains elusive. Here, we determined the stereochemical configuration at carbon C-4 in the butenolide ring of spirolide- and gymnodimine-phycotoxins by comparison of measured 13C NMR shifts with values obtained in silico using force field, semiempirical and density functional theory methods. This comparison demonstrated that modeled data support S configuration at C-4 for all studied SPXs and GYMs, suggesting a biosynthetically conserved relative configuration at carbon C-4 among these toxins.

2018 ◽  
Vol 73 (8) ◽  
pp. 557-563
Author(s):  
Mehri Fattahi ◽  
Abolghasem Davoodnia ◽  
Mehdi Pordel ◽  
S. Ali Beyramabadi ◽  
Niloofar Tavakoli-Hoseini

AbstractReaction of N-alkyl-2-imino-2H-chromene-3-carboxamides with dimethyl acetylenedicarboxylate (DMAD) in the presence of sodium carbonate as catalyst in refluxing ethanol gave new tricyclic products identified as methyl 3-alkyl-2-(2-methoxy-2-oxoethyl)-4-oxo-3,4-dihydro-2H-chromeno[2,3-d]pyrimidine-2-carboxylates. In the absence of sodium carbonate, dimethyl 2-((E)-3-(alkylcarbamoyl)-2H-chromen-2-ylideneamino)fumarates were isolated as intermediates. These intermediates could be successfully converted to the same new tricyclic products by heating in ethanol containing sodium carbonate. All new synthetic compounds were characterized on the basis of their FT-IR, 1H and 13C NMR spectra, and microanalytical data. To identify the correct stereoisomer of the intermediates, in one case a 2D nuclear Overhauser effect (2D-NOESY) spectrum together with density functional theory (DFT) calculation at the B3LYP/6-311+G(d,p) level of theory was used.


1982 ◽  
Vol 47 (23) ◽  
pp. 4397-4403 ◽  
Author(s):  
Philip DeShong ◽  
C. Michael Dicken ◽  
Ronald R. Staib ◽  
Alan J. Freyer ◽  
Steven M. Weinreb

1983 ◽  
Vol 36 (3) ◽  
pp. 493 ◽  
Author(s):  
GR Smith ◽  
B Ternai

The intermolecular relaxation rates of the pyridine-water system have been obtained by the measurement of the total spin lattice relaxation rate and the intermolecular nuclear Overhauser effect between pyridine and water, for each pyridine proton. The advantages of this method for the determination of the intermolecular relaxation rates are discussed, and the method is compared with alternative methods. The results indicate that there is a varying degree of hydration about the pyridine molecule, with the nitrogen being the preferred site of water interaction. It is necessary to interpret the results in terms of solute-solute as well as solute-solvent interactions. A model is proposed which takes account of both types of interaction, and is considered in terms of previously proposed models of pyridine-water interactions.


Sign in / Sign up

Export Citation Format

Share Document