scholarly journals Bacterial Enrichment Cultures Biotransform the Mycotoxin Deoxynivalenol into a Novel Metabolite Toxic to Plant and Porcine Cells

Toxins ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 552
Author(s):  
Ilse Vanhoutte ◽  
Caroline De Tender ◽  
Kristel Demeyere ◽  
Mohamed F. Abdallah ◽  
Sarah Ommeslag ◽  
...  

The mycotoxin deoxynivalenol (DON), produced in wheat, barley and maize by Fusarium graminearum and Fusarium culmorum, is threatening the health of humans and animals. With its worldwide high incidence in food and feed, mitigation strategies are needed to detoxify DON, maintaining the nutritional value and palatability of decontaminated commodities. A promising technique is biological degradation, where microorganisms are used to biotransform mycotoxins into less toxic metabolites. In this study, bacterial enrichment cultures were screened for their DON detoxification potential, where DON and its potential derivatives were monitored. The residual phytotoxicity was determined through a bioassay using the aquatic plant Lemna minor L. Two bacterial enrichment cultures were found to biotransform DON into a still highly toxic metabolite for plants. Furthermore, a cytotoxic effect was observed on the cellular viability of intestinal porcine epithelial cells. Through liquid chromatography high-resolution mass spectrometry analysis, an unknown compound was detected, and tentatively characterized with a molecular weight of 30.0 Da (i.e., CH2O) higher than DON. Metabarcoding of the subsequently enriched bacterial communities revealed a shift towards the genera Sphingopyxis, Pseudoxanthomonas, Ochrobactrum and Pseudarthrobacter. This work describes the discovery of a novel bacterial DON-derived metabolite, toxic to plant and porcine cells.

Author(s):  
Andriy Rebryk ◽  
Peter Haglund

Abstract The health of key species in the Baltic region has been impaired by exposure to anthropogenic hazardous substances (AHSs), which accumulate in organisms and are transferred through food chains. There is, thus, a need for comprehensive characterization of the occurrence and accumulation of AHSs in the ecosystem. In this study, we use a non-target screening (NTS) approach for this purpose. A major challenge in NTS of biological samples is the removal of matrix components such as lipids that may interfere with the detection and identification of compounds of interest. Here, we combine gel permeation chromatography with Florisil® column fractionation to achieve sufficient lipid removal for gas chromatography–high-resolution mass spectrometry analysis using electron ionization (EI) and electron capture negative ion chemical ionization (ECNI). In addition, we present new data processing workflows designed to systematically find and identify frequently occurring and biomagnifying AHSs, including known, emerging, and new contaminants. Using these workflows, we discovered a wide range of contaminants in tissue samples from blue mussels, fish, and marine mammals, and calculated their biomagnification factors (BMFs). Compounds with BMFs above 1 for herring and at least one marine mammal included legacy chlorinated pollutants (polychlorinated biphenyls, DDTs, chloro-benzenes/cyclohexanes, chlordanes, toxaphenes, dieldrin), polybrominated diphenyl ethers (PBDEs), and brominated biphenyls. However, there were also several halogenated natural products (halogenated methoxylated brominated diphenyl ethers, 1′-methyl-1,2′-bipyrroles, 1,1′-dimethyl-2,2′-bipyrroles, and the halogenated monoterpene mixed halogenated compound 1) as well as the novel flame retardant Dechlorane 602 and several polycyclic aromatic hydrocarbons, terpenoids, and steroids. The legacy pollutants exhibited the expected biomagnification behavior, demonstrating the utility of the unguided data processing workflow.


2017 ◽  
Vol 63 (5) ◽  
pp. 1008-1021 ◽  
Author(s):  
Jeremy Carlier ◽  
Xingxing Diao ◽  
Karl B Scheidweiler ◽  
Marilyn A Huestis

Abstract BACKGROUND ADB-PINACA and its 5-fluoropentyl analog 5F-ADB-PINACA are among the most potent synthetic cannabinoids tested to date, with several severe intoxication cases. ADB-PINACA and 5F-ADB-PINACA have a different legal status, depending on the country. Synthetic cannabinoid metabolites predominate in urine, making detection of specific metabolites the most reliable way for proving intake in clinical and forensic specimens. However, there are currently no data on ADB-PINACA and 5F-PINACA metabolism. The substitution of a single fluorine atom distinguishes the 2 molecules, which may share common major metabolites. For some legal applications, distinguishing between ADB-PINACA and 5F-PINACA intake is critical. For this reason, we determined the human metabolic fate of the 2 analogs. METHODS ADB-PINACA and 5F-PINACA were incubated for 3 h with pooled cryopreserved human hepatocytes, followed by liquid chromatography—high-resolution mass spectrometry analysis. Data were processed with Compound Discoverer. RESULTS We identified 19 and 12 major ADB-PINACA and 5F-ADB-PINACA metabolites, respectively. Major metabolic reactions included pentyl hydroxylation, hydroxylation followed by oxidation (ketone formation), and glucuronidation of ADB-PINACA, and oxidative defluorination followed by carboxylation of 5F-ADB-PINACA. CONCLUSIONS We recommend ADB-PINACA ketopentyl and hydroxypentyl, and ADB-PINACA 5-hydroxypentyl and pentanoic acid, as optimal markers for ADB-PINACA and 5F-ADB-PINACA intake, respectively. Since the 2 compounds present positional isomers as the primary metabolites, monitoring unique product ions and optimized chromatographic conditions are required for a clear distinction between ADB-PINACA and 5F-ADB-PINACA intake.


Sign in / Sign up

Export Citation Format

Share Document