scholarly journals Hard-Core Radius of Nucleons within the Induced Surface Tension Approach

Universe ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 63 ◽  
Author(s):  
Kyrill Bugaev ◽  
Aleksei Ivanytskyi ◽  
Violetta Sagun ◽  
Boris Grinyuk ◽  
Denis Savchenko ◽  
...  

We review the recent approach to model the hadronic and nuclear matter equations of state using the induced surface tension concept, which allows one to go far beyond the usual Van der Waals approximation. Since the obtained equations of state, classical and quantum, are among the most successful ones in describing the properties of low density phases of strongly interacting matter, they set strong restrictions on the possible value of the hard-core radius of nucleons, which is widely used in phenomenological equations of state. We summarize the latest results obtained within this novel approach and perform a new detailed analysis of the hard-core radius of nucleons, which follows from hadronic and nuclear matter properties. Such an analysis allows us to find the most trustworthy range of its values: the hard-core radius of nucleons is 0.3–0.36 fm. A comparison with the phenomenology of neutron stars implies that the hard-core radius of nucleons has to be temperature and density dependent. Such a finding is supported when the eigenvolume of composite particles like hadrons originates from their fermionic substructure due to the Pauli blocking effect.


Particles ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 477-499 ◽  
Author(s):  
David Blaschke ◽  
Hovik Grigorian ◽  
Gerd Röpke

The relativistic mean field (RMF) model of the nuclear matter equation of state was modified by including the effect of Pauli-blocking owing to quark exchange between the baryons. Different schemes of a chiral enhancement of the quark Pauli blocking was suggested according to the adopted density dependence of the dynamical quark mass. The resulting equations of state for the pressure are compared to the RMF model DD2 with excluded volume correction. On the basis of this comparison a density-dependent nucleon volume is extracted which parameterizes the quark Pauli blocking effect in the respective scheme of chiral enhancement. The dependence on the isospin asymmetry is investigated and the corresponding density dependent nuclear symmetry energy is obtained in fair accordance with phenomenological constraints. The deconfinement phase transition is obtained by a Maxwell construction with a quark matter phase described within a higher order NJL model. Solutions for rotating and nonrotating (hybrid) compact star sequences are obtained, which show the effect of high-mass twin compact star solutions for the rotating case.



Author(s):  
Boris E. Grinyuk ◽  
Kyrill A. Bugaev ◽  
Violetta V. Sagun ◽  
Oleksii I. Ivanytskyi ◽  
Dmitry L. Borisyuk ◽  
...  

From the analysis of light (anti)nuclei multiplicities that were measured recently by the ALICE collaboration in Pb+Pb collisions at the center-of-mass collision energy [Formula: see text][Formula: see text]TeV, there arose a highly nontrivial question about the excluded volume of composite particles. Surprisingly, the hadron resonance gas model (HRGM) is able to perfectly describe the light (anti) nuclei multiplicities under various assumptions. Thus, one can consider the (anti)nuclei with a vanishing hard-core radius (as the point-like particles) or with the hard-core radius of proton, but the fit quality is the same for these assumptions. It is clear, however, that such assumptions are unphysical. Hence we obtain a formula for the classical excluded volume of loosely bound light nuclei consisting of A baryons. To implement a new formula into the HRGM, we have to modify the induced surface tension concept to treat the hadrons and (anti)nuclei on the same footing. We perform a thorough analysis of hadronic and (anti)nuclei multiplicities measured by the ALICE collaboration. The HRGM with the induced surface tension allows us to verify different assumptions on the values of hard-core radii and different scenarios of chemical freeze-out of (anti)nuclei. It is shown that the unprecedentedly high quality of fit [Formula: see text] is achieved, if the chemical freeze-out temperature of hadrons is about [Formula: see text][Formula: see text]MeV, while the one for all (anti)nuclei is [Formula: see text][Formula: see text]MeV.



2017 ◽  
Vol 28 (09) ◽  
pp. 1750120 ◽  
Author(s):  
Yong Peng ◽  
Yun Fei Mao ◽  
Bo Wang ◽  
Bo Xie

Equations of State (EOS) is crucial in simulating multiphase flows by the pseudo-potential lattice Boltzmann method (LBM). In the present study, the Peng and Robinson (P–R) and Carnahan and Starling (C–S) EOS in the pseudo-potential LBM with Exact Difference Method (EDM) scheme for two-phase flows have been compared. Both of P–R and C–S EOS have been used to study the two-phase separation, surface tension, the maximum two-phase density ratio and spurious currents. The study shows that both of P–R and C–S EOS agree with the analytical solutions although P–R EOS may perform better. The prediction of liquid phase by P–R EOS is more accurate than that of air phase and the contrary is true for C–S EOS. Predictions by both of EOS conform with the Laplace’s law. Besides, adjustment of surface tension is achieved by adjusting [Formula: see text]. The P–R EOS can achieve larger maximum density ratio than C–S EOS under the same [Formula: see text]. Besides, no matter the C–S EOS or the P–R EOS, if [Formula: see text] tends to 0.5, the computation is prone to numerical instability. The maximum spurious current for P–R is larger than that of C–S. The multiple-relaxation-time LBM still can improve obviously the numerical stability and can achieve larger maximum density ratio.



1966 ◽  
Vol 44 (1) ◽  
pp. 31-38 ◽  
Author(s):  
K. Ananthanarayanan ◽  
K. Srinivasa Rao
Keyword(s):  






2011 ◽  
Vol 20 (11) ◽  
pp. 2317-2327 ◽  
Author(s):  
DIPTI PACHOURI ◽  
MANJARI SHARMA ◽  
SYED RAFI ◽  
W. HAIDER

In the present work we describe our results concerning the calculation of equation of state of symmetric zero temperature nuclear matter and the microscopic optical potential using the soft-core Argonne inter-nucleon potentials in first order Brueckner–Hartree–Fock (BHF) theory. The nuclear matter saturates at a density 0.228 nucleon/fm 3 with 17.52 MeV binding energy per nucleon for Argonne av-14 and at 0.228 nucleon/fm 3 with 17.01 MeV binding energy per nucleon for Argonne av-18. As a test case we present an analysis of 65 and 200 MeV protons scattering from 208 Pb . The Argonne av-14 has been used for the first time to calculate nucleon optical potential in BHF and analyze the nucleon scattering data. We also compare our reaction matrix results with those using the old hard-core Hamada–Johnston and the soft-core Urbana uv-14 and Argonne av-18 inter-nucleon potentials. Our results indicate that the microscopic potential obtained using av-14 gives marginally better agreement with the experimental data than the other three Hamiltonians used in the present work.



1957 ◽  
Vol 53 (2) ◽  
pp. 514-524 ◽  
Author(s):  
J. G. Oldroyd

ABSTRACTAn investigation is made of the deformation and flow properties of two-dimensional disperse systems consisting of small circular patches of one component widely dispersed in a continuous component with different rheological properties. Attention is restricted to small deformations (or small rates of deformation in the case of a fluid system) so that the equations of state are linear and the properties of each component can be characterized by two elastic moduli, or by two operators involving d/dt which take the place of moduli. Surface tension in each component and boundary tension between the components are taken into account, so that the theory can be applied to interfacial films at liquid-liquid or liquid-gas interfaces as well as to thicker sheets and films. General formulae are derived, expressing the two modulus operators of a disperse system in terms of those of the components, and their use is illustrated by means of examples.



Sign in / Sign up

Export Citation Format

Share Document