Effects ofD-state admixture and hard-core radius on the photoproduction of neutral pions from deuterons

1966 ◽  
Vol 44 (1) ◽  
pp. 31-38 ◽  
Author(s):  
K. Ananthanarayanan ◽  
K. Srinivasa Rao
Keyword(s):  

Universe ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 63 ◽  
Author(s):  
Kyrill Bugaev ◽  
Aleksei Ivanytskyi ◽  
Violetta Sagun ◽  
Boris Grinyuk ◽  
Denis Savchenko ◽  
...  

We review the recent approach to model the hadronic and nuclear matter equations of state using the induced surface tension concept, which allows one to go far beyond the usual Van der Waals approximation. Since the obtained equations of state, classical and quantum, are among the most successful ones in describing the properties of low density phases of strongly interacting matter, they set strong restrictions on the possible value of the hard-core radius of nucleons, which is widely used in phenomenological equations of state. We summarize the latest results obtained within this novel approach and perform a new detailed analysis of the hard-core radius of nucleons, which follows from hadronic and nuclear matter properties. Such an analysis allows us to find the most trustworthy range of its values: the hard-core radius of nucleons is 0.3–0.36 fm. A comparison with the phenomenology of neutron stars implies that the hard-core radius of nucleons has to be temperature and density dependent. Such a finding is supported when the eigenvolume of composite particles like hadrons originates from their fermionic substructure due to the Pauli blocking effect.





2004 ◽  
Vol 42 (2) ◽  
pp. 185-193
Author(s):  
J. Amorós ◽  
S. Ravi ◽  
M. Kalidoss


1963 ◽  
Vol 41 (12) ◽  
pp. 2187-2201 ◽  
Author(s):  
P. D. Kunz

The separation of doublet levels in the mass 5, 6, 14, 15, and 17 systems is calculated from recent semiphenomenological potentials. Shell-model harmonic-oscillator functions are used to represent the nucleons. These wave functions are modified by means of correlation functions which vanish whenever any two nucleons approach closer than the hard-core radius and approach the unmodified oscillator function for large nucleon separations. It is found that the two-body spin-orbit potentials give 50 to 70% of the experimentally observed splittings.



Author(s):  
Boris E. Grinyuk ◽  
Kyrill A. Bugaev ◽  
Violetta V. Sagun ◽  
Oleksii I. Ivanytskyi ◽  
Dmitry L. Borisyuk ◽  
...  

From the analysis of light (anti)nuclei multiplicities that were measured recently by the ALICE collaboration in Pb+Pb collisions at the center-of-mass collision energy [Formula: see text][Formula: see text]TeV, there arose a highly nontrivial question about the excluded volume of composite particles. Surprisingly, the hadron resonance gas model (HRGM) is able to perfectly describe the light (anti) nuclei multiplicities under various assumptions. Thus, one can consider the (anti)nuclei with a vanishing hard-core radius (as the point-like particles) or with the hard-core radius of proton, but the fit quality is the same for these assumptions. It is clear, however, that such assumptions are unphysical. Hence we obtain a formula for the classical excluded volume of loosely bound light nuclei consisting of A baryons. To implement a new formula into the HRGM, we have to modify the induced surface tension concept to treat the hadrons and (anti)nuclei on the same footing. We perform a thorough analysis of hadronic and (anti)nuclei multiplicities measured by the ALICE collaboration. The HRGM with the induced surface tension allows us to verify different assumptions on the values of hard-core radii and different scenarios of chemical freeze-out of (anti)nuclei. It is shown that the unprecedentedly high quality of fit [Formula: see text] is achieved, if the chemical freeze-out temperature of hadrons is about [Formula: see text][Formula: see text]MeV, while the one for all (anti)nuclei is [Formula: see text][Formula: see text]MeV.







2011 ◽  
Author(s):  
Paul McEwan
Keyword(s):  


2020 ◽  
Vol 17 (2) ◽  
pp. 185-196
Author(s):  
Shyamal K. Jash ◽  
Dilip Gorai ◽  
Lalan C. Mandal ◽  
Rajiv Roy

Flavonoids are considered as a significant class of compounds among the natural products, exhibiting a variety of structural skeletons as well as multidirectional biological potentials. In structural elucidations of natural products, Nuclear Magnetic Resonance (NMR) spectroscopy has been playing a vital role; the technique is one of the sharpest tools in the hands of natural products chemists. The present resume deals with hard-core applications of such spectral technique, particularly in structural elucidation of flavonoids; different NMR techniques including 1H-NMR, 13C-NMR, and 2D-NMR [viz. 1H-1H COSY, COLOC, HMBC, HMQC] are described in detail.



Sign in / Sign up

Export Citation Format

Share Document