scholarly journals The Clustering Dynamics of Primordial Black Boles in N-Body Simulations

Universe ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 18
Author(s):  
Manuel Trashorras ◽  
Juan García-Bellido ◽  
Savvas Nesseris

We explore the possibility that Dark Matter (DM) may be explained by a nonuniform background of approximately stellar mass clusters of Primordial Black Holes (PBHs) by simulating the evolution from recombination to the present with over 5000 realisations using a Newtonian N-body code. We compute the cluster rate of evaporation and extract the binary and merged sub-populations along with their parent and merger tree histories, lifetimes and formation rates, the dynamical and orbital parameter profiles, the degree of mass segregation and dynamical friction and power spectrum of close encounters. Overall, we find that PBHs can constitute a viable DM candidate, and that their clustering presents a rich phenomenology throughout the history of the Universe. We show that binary systems constitute about 9.5% of all PBHs at present, with mass ratios of q¯B=0.154, and total masses of m¯T,B=303M⊙. Merged PBHs are rare, about 0.0023% of all PBHs at present, with mass ratios of q¯B=0.965 with total and chirp masses of m¯T,B=1670M⊙ and m¯c,M=642M⊙, respectively. We find that cluster puffing up and evaporation leads to bubbles of these PBHs of order 1 kpc containing at present times about 36% of objects and mass, with one-hundred pc-sized cores. We also find that these PBH sub-haloes are distributed in wider PBH haloes of order hundreds of kpc, containing about 63% of objects and mass, coinciding with the sizes of galactic halos. We find at last high rates of close encounters of massive Black Holes (M∼1000M⊙), with ΓS=(1.2+5.9−0.9)×107yr−1Gpc−3 and mergers with ΓM=1337±41yr−1Gpc−3.

2020 ◽  
Vol 492 (2) ◽  
pp. 2755-2761 ◽  
Author(s):  
Andrei Gruzinov ◽  
Yuri Levin ◽  
Christopher D Matzner

ABSTRACT An overdense wake is created by a gravitating object moving through a gaseous medium, and this wake pulls back on the object and slows it down. This is conventional dynamical friction in a gaseous medium. We argue that if the object drives a sufficiently powerful outflow, the wake is destroyed and instead an extended underdense region is created behind the object. In this case the overall gravitational force is applied in the direction of the object’s motion, producing a negative dynamical friction (NDF). Black holes in dense gas drive powerful outflows and may experience the NDF, although extensive numerical work is probably needed to demonstrate or refute this conclusively. NDF may be important for stellar-mass black holes and neutron stars inside ‘common envelopes’ in binary systems, for stellar mass black holes inside active galactic nucleus discs, or for massive black holes growing through super-Eddington accretion in early Universe.


2004 ◽  
pp. 227-230 ◽  
Author(s):  
Marta Volonteri ◽  
Francesco Haardt ◽  
Piero Madau ◽  
Alberto Sesana

1985 ◽  
Vol 299 ◽  
pp. 633 ◽  
Author(s):  
C. G. Lacey ◽  
J. P. Ostriker

2020 ◽  
Vol 58 (1) ◽  
pp. 27-97 ◽  
Author(s):  
Kohei Inayoshi ◽  
Eli Visbal ◽  
Zoltán Haiman

The existence of ∼109M⊙ supermassive black holes (SMBHs) within the first billion years of the Universe has stimulated numerous ideas for the prompt formation and rapid growth of black holes (BHs) in the early Universe. Here, we review ways in which the seeds of massive BHs may have first assembled, how they may have subsequently grown as massive as ∼109M⊙, and how multimessenger observations could distinguish between different SMBH assembly scenarios. We conclude the following: ▪  The ultrarare ∼109 M⊙ SMBHs represent only the tip of the iceberg. Early BHs likely fill a continuum from the stellar-mass (∼10M⊙) to the supermassive (∼109) regimes, reflecting a range of initial masses and growth histories. ▪  Stellar-mass BHs were likely left behind by the first generation of stars at redshifts as high as ∼30, but their initial growth typically was stunted due to the shallow potential wells of their host galaxies. ▪  Conditions in some larger, metal-poor galaxies soon became conducive to the rapid formation and growth of massive seed holes, via gas accretion and by mergers in dense stellar clusters. ▪  BH masses depend on the environment (such as the number and properties of nearby radiation sources and the local baryonic streaming velocity) and on the metal enrichment and assembly history of the host galaxy. ▪  Distinguishing between assembly mechanisms will be difficult, but a combination of observations by the Laser Interferometer Space Antenna (probing massive BH growth via mergers) and by deep multiwavelength electromagnetic observations (probing growth via gas accretion) is particularly promising.


2004 ◽  
Vol 604 (2) ◽  
pp. 632-652 ◽  
Author(s):  
M. Atakan Gurkan ◽  
Marc Freitag ◽  
Frederic A. Rasio

2020 ◽  
Vol 497 (3) ◽  
pp. 3623-3637
Author(s):  
Francesco Flammini Dotti ◽  
M B N Kouwenhoven ◽  
Qi Shu ◽  
Wei Hao ◽  
Rainer Spurzem

ABSTRACT Most stars form in dense stellar environments. It is speculated that some dense star clusters may host intermediate-mass black holes (IMBHs), which may have formed from runaway collisions between high-mass stars, or from the mergers of less massive black holes. Here, we numerically explore the evolution of populations of planets in star clusters with an IMBH. We study the dynamical evolution of single-planet systems and free-floating planets, over a period of 100 Myr, in star clusters without an IMBH, and in clusters with a central IMBH of mass $100\, \mathrm{M}_\odot$ or $200\, \mathrm{M}_\odot$. In the central region ($r\lesssim 0.2$ pc), the IMBH’s tidal influence on planetary systems is typically 10 times stronger than the average neighbour star. For a star cluster with a $200\, \mathrm{M}_\odot$ IMBH, the region in which the IMBH’s influence is stronger within the virial radius (∼1 pc). The IMBH quenches mass segregation, and the stars in the core tend to move towards intermediate regions. The ejection rate of both stars and planets is higher when an IMBH is present. The rate at which planets are expelled from their host star rate is higher for clusters with higher IMBH masses, for t < 0.5trh, while remains mostly constant while the star cluster fills its Roche lobe, similar to a star cluster without an IMBH. The disruption rate of planetary systems is higher in initially denser clusters, and for wider planetary orbits, but this rate is substantially enhanced by the presence of a central IMBH.


Sign in / Sign up

Export Citation Format

Share Document