mass segregation
Recently Published Documents


TOTAL DOCUMENTS

230
(FIVE YEARS 47)

H-INDEX

38
(FIVE YEARS 7)

2021 ◽  
Vol 923 (1) ◽  
pp. 20
Author(s):  
Xiaoying Pang ◽  
Zeqiu Yu ◽  
Shih-Yun Tang ◽  
Jongsuk Hong ◽  
Zhen Yuan ◽  
...  

Abstract We identify hierarchical structures in the Vela OB2 complex and the cluster pair Collinder 135 and UBC 7 with Gaia EDR3 using the neural network machine-learning algorithm StarGO. Five second-level substructures are disentangled in Vela OB2, which are referred to as Huluwa 1 (Gamma Velorum), Huluwa 2, Huluwa 3, Huluwa 4, and Huluwa 5. For the first time, Collinder 135 and UBC 7 are simultaneously identified as constituent clusters of the pair with minimal manual intervention. We propose an alternative scenario in which Huluwa 1–5 have originated from sequential star formation. The older clusters Huluwa 1–3, with an age of 10–22 Myr, generated stellar feedback to cause turbulence that fostered the formation of the younger-generation Huluwa 4–5 (7–20 Myr). A supernova explosion located inside the Vela IRAS shell quenched star formation in Huluwa 4–5 and rapidly expelled the remaining gas from the clusters. This resulted in global mass stratification across the shell, which is confirmed by the regression discontinuity method. The stellar mass in the lower rim of the shell is 0.32 ± 0.14 M ⊙ higher than in the upper rim. Local, cluster-scale mass segregation is observed in the lowest-mass cluster Huluwa 5. Huluwa 1–5 (in Vela OB2) are experiencing significant expansion, while the cluster pair suffers from moderate expansion. The velocity dispersions suggest that all five groups (including Huluwa 1A and Huluwa 1B) in Vela OB2 and the cluster pair are supervirial and are undergoing disruption, and also that Huluwa 1A and Huluwa 1B may be a coeval young cluster pair. N-body simulations predict that Huluwa 1–5 in Vela OB2 and the cluster pair will continue to expand in the future 100 Myr and eventually dissolve.


Author(s):  
Xinhua Gao ◽  
ShouKun Xu ◽  
Lei Xue

Abstract This paper investigates the spatial structure and dynamical state of the old open cluster NGC 2112 based on likely cluster members from Gaia Early Data Release 3. Using the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, we find 1193 likely cluster members down to G ∼ 21 mag within a radius of 1.°5 from the cluster center. These likely cluster members can be divided into 865 core members and 328 border members by DBSCAN. We find that the core members are, on average, significantly brighter and more centrally concentrated than the border members. This suggests the existence of clear mass segregation within the cluster. We find that the outer regions of the cluster exhibit a slightly elongated shape, which may be caused by external tidal perturbations. We estimate a distance of D = 1108 ± 3 pc for the cluster based on bright core members. We find that NGC 2112 has a cluster radius of Rcl ∼ 40′ (∼12.9 pc) and a core radius of $R_{\rm c} \sim {4{^{\prime }_{.}}8} \pm {0{^{\prime }_{.}}2}$ (∼1.5 pc). This indicates that NGC 2112 has a central concentration parameter of C = log (Rcl/Rc) ∼ 0.92, which is significantly larger than previously thought. In addition, we estimate a total mass of Mcl = 858 ± 12 M⊙ and an initial mass of Mini = (2.2 ± 0.5) × 104 M⊙ for the cluster. This implies that NGC 2112 may have lost more than $90\%$ of its initial mass. Based on the obtained distance and kinematical data, we also calculate the Galactic orbit of the cluster.


Author(s):  
D Bisht ◽  
Qingfeng Zhu ◽  
R K S Yadav ◽  
Shashikiran Ganesh ◽  
Geeta Rangwal ◽  
...  

Abstract This paper presents a comprehensive analysis of two pairs of binary clusters (NGC 5617 and Trumpler 22) and (NGC 3293 and NGC 3324) located in the fourth quadrant of our Galaxy. For this purpose we use different data taken from VVV survey, WISE, VPHAS, APASS, GLIMPSE along with Gaia EDR3 astrometric data. We identified 584, 429, 692 and 273 most probable cluster members with membership probability higher than $80 \%$ towards the region of clusters NGC 5617, Trumpler 22, NGC 3293 and NGC 3324. We estimated the value of $R=\frac{A_{V}}{E(B-V)}$ as ∼ 3.1 for clusters NGC 5617 and Trumpler 22, which indicates normal extinction law. The value of R ∼3.8 and ∼1.9 represent the abnormal extinction law towards the clusters NGC 3293 and NGC 3324. Our Kinematical analysis show that all these clusters have circular orbits. Ages are found to be 90 ± 10 and 12 ± 3 Myr for the cluster pairs (NGC 5617 and Trumpler 22) and (NGC 3293 and NGC 3324), respectively. The distances of 2.43 ± 0.08, 2.64 ± 0.07, 2.59 ± 0.1 and 2.80 ± 0.2 kpc estimated using parallax are alike to the values calculated by using the distance modulus. We have also identified 18 and 44 young stellar object candidates present in NGC 5617 and Trumpler 22, respectively. Mass function slopes are found to be in fair agreement with the Salpeter’s value. The dynamical study of these objects shows a lack of faint stars in their inner regions, which leads to the mass-segregation effect. Our study indicates that NGC 5617 and Trumpler 22 are dynamically relaxed but the other pair of clusters are not. Orbital alongwith the physical parameters show that the clusters in both pairs are physically connected.


Universe ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 18
Author(s):  
Manuel Trashorras ◽  
Juan García-Bellido ◽  
Savvas Nesseris

We explore the possibility that Dark Matter (DM) may be explained by a nonuniform background of approximately stellar mass clusters of Primordial Black Holes (PBHs) by simulating the evolution from recombination to the present with over 5000 realisations using a Newtonian N-body code. We compute the cluster rate of evaporation and extract the binary and merged sub-populations along with their parent and merger tree histories, lifetimes and formation rates, the dynamical and orbital parameter profiles, the degree of mass segregation and dynamical friction and power spectrum of close encounters. Overall, we find that PBHs can constitute a viable DM candidate, and that their clustering presents a rich phenomenology throughout the history of the Universe. We show that binary systems constitute about 9.5% of all PBHs at present, with mass ratios of q¯B=0.154, and total masses of m¯T,B=303M⊙. Merged PBHs are rare, about 0.0023% of all PBHs at present, with mass ratios of q¯B=0.965 with total and chirp masses of m¯T,B=1670M⊙ and m¯c,M=642M⊙, respectively. We find that cluster puffing up and evaporation leads to bubbles of these PBHs of order 1 kpc containing at present times about 36% of objects and mass, with one-hundred pc-sized cores. We also find that these PBH sub-haloes are distributed in wider PBH haloes of order hundreds of kpc, containing about 63% of objects and mass, coinciding with the sizes of galactic halos. We find at last high rates of close encounters of massive Black Holes (M∼1000M⊙), with ΓS=(1.2+5.9−0.9)×107yr−1Gpc−3 and mergers with ΓM=1337±41yr−1Gpc−3.


Author(s):  
Yael Raveh ◽  
Hagai B Perets

Abstract The gravitational-wave (GW) inspirals of stellar-mass compact objects onto a supermassive black hole (MBH), are some of the most promising GW sources detectable by next-generation space-born GW-detectors. The rates and characteristics of such extreme mass ratio inspirals (EMRIs) sources are highly uncertain. They are determined by the dynamics of stars near MBHs, and the rate at which compacts objects are driven to the close proximity of the MBH. Here we consider weakly and strongly mass-segregated nuclear clusters, and the evolution of stars captured into highly eccentric orbits following binary disruptions by the MBH. We make use of a Monte-Carlo approach to model the diffusion of both captured objects, and compact-objects brought through two-body relaxation processes. We calculate the rates of GW-inspirals resulting from relaxation-driven objects, and characterize EMRIs properties. We correct previous studies and show that relaxation-driven sources produce GW-sources with lower-eccentricity than previously found, and provide the detailed EMRI eccentricity distribution in the weak and strong mass-segregation regimes. We also show that binary-disruption captured-stars could introduce low-eccentricity GW-sources of stellar black-hole EMRIs in mass-segregated clusters. The eccentricities of the GW-sources from the capture channel, however, are strongly affected by relaxation processes, and are significantly higher than previously suggested. We find that both the rate and eccentricity distribution of EMRIs could probe the dynamics near MBHs, and the contribution of captured stars, characterize the mass-function of stellar compact objects, and verify whether weak or strong mass-segregation processes take place near MBHs.


2020 ◽  
Vol 905 (1) ◽  
pp. 12
Author(s):  
Seonwoo Kim ◽  
Emanuele Contini ◽  
Hoseung Choi ◽  
San Han ◽  
Jaehyun Lee ◽  
...  
Keyword(s):  

2020 ◽  
Vol 904 (2) ◽  
pp. 198
Author(s):  
Zhongqun Cheng ◽  
Zhiyuan Li ◽  
Wei Wang ◽  
Xiangdong Li ◽  
Xiaojie Xu

Author(s):  
T. Nony ◽  
J.-F. Robitaille ◽  
F. Motte ◽  
M. Gonzalez ◽  
I. Joncour ◽  
...  

2020 ◽  
Vol 4 (9) ◽  
pp. 163
Author(s):  
Carleen Markey ◽  
Dávid Guszejnov ◽  
Stella S. R. Offner

Sign in / Sign up

Export Citation Format

Share Document