scholarly journals Analytical Solution and Quasi-Periodic Behavior of a Charged Dilaton Black Hole

Universe ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 377
Author(s):  
Ruifang Wang ◽  
Fabao Gao

With the vast breakthrough brought by the Event Horizon Telescope, the theoretical analysis of various black holes has become more critical than ever. In this paper, the second-order asymptotic analytical solution of the charged dilaton black hole flow in the spinodal region is constructed from the perspective of dynamics by using the two-timing scale method. Through a numerical comparison with the original charged dilaton black hole system, it is found that the constructed analytical solution is highly consistent with the numerical solution. In addition, several quasi-periodic motions of the charged dilaton black hole flow are numerically obtained under different groups of irrational frequency ratios, and the phase portraits of the black hole flow with sufficiently small thermal parameter perturbation display good stability. Finally, the final evolution state of black hole flow over time is studied according to the obtained analytical solution. The results show that the smaller the integral constant of the system, the greater the periodicity of the black hole flow.

2019 ◽  
Vol 15 (S356) ◽  
pp. 348-350
Author(s):  
Eva Šrámková ◽  
K. Goluchová ◽  
G. Török ◽  
Marek A. Abramowicz ◽  
Z. Stuchlík ◽  
...  

AbstractA strong quasi-periodic modulation has recently been revealed in the X-ray flux of the X-ray source XMMUJ134736.6+173403. The two observed twin-peak quasiperiodic oscillations (QPOs) exhibit a 3:1 frequency ratio and strongly support the evidence for the presence of an active galactic nucleus black hole (AGN BH). It has been suggested that detections of twin-peak QPOs with commensurable frequency ratios and scaling of their periods with BH mass could provide the basis for a method intended to determine the mass of BH sources, such as AGNs. Assuming the orbital origin of QPOs, we calculate the upper and lower limit on the AGN BH mass M, reaching M ≍ 107–109M⊙. Compared to mass estimates of other sources, XMMUJ134736.6+173403 appears to be the most massive source with commensurable QPO frequencies, and its mass represents the current observational upper limit on the AGN BH mass obtained from the QPO observations.


2009 ◽  
Vol 677 (3-4) ◽  
pp. 186-189 ◽  
Author(s):  
Jieci Wang ◽  
Qiyuan Pan ◽  
Songbai Chen ◽  
Jiliang Jing

2018 ◽  
Author(s):  
Seyedeh Fatemeh Mirekhtiary ◽  
Akbar Abbasi

2006 ◽  
Vol 55 (4) ◽  
pp. 1607
Author(s):  
Liu Cheng-Zhou ◽  
Zhao Zheng

2019 ◽  
Vol 79 (10) ◽  
Author(s):  
Ganim Gecim ◽  
Yusuf Sucu

Abstract The quantum gravity correction to the Hawking temperature of the 2+1 dimensional spinning dilaton black hole is studied by using the Hamilton-Jacobi approach in the context of the Generalized Uncertainty Principle (GUP). It is observed that the modified Hawking temperature of the black hole depends on both black hole and the tunnelling particle properties. Moreover, it is observed that the mass and the angular momentum of the scalar particle have the same effect on the Hawking temperature of the black hole, while the mass and total angular momentum (orbital+spin) of Dirac particle have different effect. Furthermore, the mass and total angular momentum (orbital+spin) of vector boson particle have a similar effect that of Dirac particle. Also, thermodynamical stability and phase transition of the black hole are discussed for scalar, Dirac and vector boson in the context of GUP, respectively. And, it is observed that the scalar particle probes the black hole as stable whereas, as for Dirac and vector boson particles, it might undergoes second-type phase transition to become stable while in the absence of the quantum gravity effect all of these particle probes the black hole as stable.


2013 ◽  
Vol 28 (27) ◽  
pp. 1350109 ◽  
Author(s):  
I. SAKALLI

In this study, we employ the scalar perturbations of the charged dilaton black hole (CDBH) found by Chan, Horne and Mann (CHM), and described with an action which emerges in the low-energy limit of the string theory. A CDBH is neither asymptotically flat (AF) nor non-asymptotically flat (NAF) spacetime. Depending on the value of its dilaton parameter a, it has both Schwarzschild and linear dilaton black hole (LDBH) limits. We compute the complex frequencies of the quasinormal modes (QNMs) of the CDBH by considering small perturbations around its horizon. By using the highly damped QNM in the process prescribed by Maggiore, we obtain the quantum entropy and area spectra of these black holes (BHs). Although the QNM frequencies are tuned by a, we show that the quantum spectra do not depend on a, and they are equally spaced. On the other hand, the obtained value of undetermined dimensionless constant ϵ is the double of Bekenstein's result. The possible reason of this discrepancy is also discussed.


Sign in / Sign up

Export Citation Format

Share Document