scholarly journals Underground Measurements of Nuclear Reaction Cross-Sections Relevant to AGB Stars

Universe ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 4
Author(s):  
Chemseddine Ananna ◽  
Francesco Barile ◽  
Axel Boeltzig ◽  
Carlo Giulio Bruno ◽  
Francesca Cavanna ◽  
...  

Nuclear reaction cross sections are essential ingredients to predict the evolution of AGB stars and understand their impact on the chemical evolution of our Galaxy. Unfortunately, the cross sections of the reactions involved are often very small and challenging to measure in laboratories on Earth. In this context, major steps forward were made with the advent of underground nuclear astrophysics, pioneered by the Laboratory for Underground Nuclear Astrophysics (LUNA). The present paper reviews the contribution of LUNA to our understanding of the evolution of AGB stars and related nucleosynthesis.

2020 ◽  
Vol 227 ◽  
pp. 01012
Author(s):  
Matej Lipoglavsek ◽  
Aleksandra Cvetinović

Electron screening in an important effect that cannot be neglected in nuclear astrophysics, since it influences nuclear reaction cross sections at low energies. We are trying to understand why most measurements in inverse kinematics on solid targets give electron screening potentials more than an order of magnitude above predictions. Below we report our latest results on electron screening in nuclear reactions 1H(14N,γ)15O and 2H(19F,ρ)2°F in both inverse and normal kinematics. The analysis is in progress.


1987 ◽  
Vol 5 (2) ◽  
pp. 399-404 ◽  
Author(s):  
V. I. Kukulin ◽  
V. M. Krasnopol'sky ◽  
V. T. Voronchev

The work proposes a straightforward method for determining the nuclear reaction cross sections at extremely low energies (E ≃ 1–100 keV) on the basis of the measurements of the relative yield of fast particles which are products of the nuclear reactions in a target under laser compression. On the other hand, the proposed method makes it possible to find the averaged form of the ion velocity distribution function if the low-energy behaviour of the respective cross sections is known.


2020 ◽  
Vol 13 ◽  
pp. 18
Author(s):  
P. Demetriou

Nuclear reaction rates play a crucial role in nuclear astrophysics. In the last decades there has been an enormous effort to measure reaction cross sections and extensive experimental databases have been compiled as a result. In spite of these efforts, most nuclear reaction network calculations still have to rely on theoretical predic- tions of experimentally unknown rates. In particular, in astrophysics applications such as the s-, r- and p-process nucleosynthesis involving a large number of nuclei and nuclear reactions (thousands). Moreover, most of the ingredients of the cal- culations of reaction rates have to be extrapolated to energy and/or mass regions that cannot be explored experimentally. For this reason it is important to develop global microscopic or semi-microscopic models of nuclear properties that give an accurate description of existing data and are reliable for predictions far away from the stability line. The need for more microscopic input parameters has led to new devel- opments within the Hartree-Fock-Bogoliubov method, some of which are presented in this paper.


2020 ◽  
Vol 38 (3) ◽  
pp. 211-213
Author(s):  
I. B. Földes ◽  
G. I. Pokol

AbstractA recently published scheme for inertial fusion based on instantaneous heating of an uncompressed fuel is criticized. It is shown that efficient fusion and “time-like” fusion burn propagation cannot be realized due to the low nuclear reaction cross-sections. The suggested use of nanospheres inside the volume of the target to support the fast heating of the fuel is also questioned.


Sign in / Sign up

Export Citation Format

Share Document