scholarly journals Putative Novel Serotypes ‘33’ and ‘35’ in Clinically Healthy Small Ruminants in Mongolia Expand the Group of Atypical BTV

Viruses ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 42
Author(s):  
Christina Ries ◽  
Tumenjargal Sharav ◽  
Erdene-Ochir Tseren-Ochir ◽  
Martin Beer ◽  
Bernd Hoffmann

Between 2015 and 2018, we identified the presence of three so-far-unknown Bluetongue virus (BTV) strains (BTV-MNG1/2018, BTV-MNG2/2016, and BTV-MNG3/2016) circulating in clinical healthy sheep and goats in Mongolia. Virus isolation from EDTA blood samples of BTV-MNG1/2018 and BTV-MNG3/2016 was successful on the mammalian cell line BSR using blood collected from surveillance. After experimental inoculation of goats with BTV-MNG2/2016 positive blood as inoculum, we observed viraemia in one goat and with the EDTA blood of the experimental inoculation, the propagation of BTV-MNG2/2016 in cell culture was successful on mammalian cell line BSR as well. However, virus isolation experiments for BTV-MNG2/2016 on KC cells were unsuccessful. Furthermore, we generated the complete coding sequence of all three novel Mongolian strains. For atypical BTV, serotyping via the traditional serum neutralization assay is not trivial. We therefore sorted the ‘putative novel atypical serotypes’ according to their segment-2 sequence identities and their time point of sampling. Hence, the BTV-MNG1/2018 isolate forms the ‘putative novel atypical serotype’ 33, the BTV-MNG3/2016 the ‘putative novel atypical serotype’ 35, whereas the BTV-MNG2/2016 strain belongs to the same putative novel atypical serotype ‘30’ as BTV-XJ1407 from China.

1992 ◽  
Vol 225 (4) ◽  
pp. 331-337 ◽  
Author(s):  
Pierre Sokoloff ◽  
Marc Andrieux ◽  
Roger Besançon ◽  
Catherine Pilon ◽  
Marie-Pascale Martres ◽  
...  

1994 ◽  
Vol 3 (2) ◽  
pp. 253-256 ◽  
Author(s):  
Rosann A. Farber ◽  
Thomas D. Petes ◽  
Margaret Dominska ◽  
Sarah S. Hudgens ◽  
R.Michael Liskay

1962 ◽  
Vol 17 (4) ◽  
pp. 479 ◽  
Author(s):  
N. Delihas ◽  
M. A. Rich ◽  
M. L. Eidinoff

2011 ◽  
Vol 7 (6) ◽  
pp. e1002074 ◽  
Author(s):  
Velia Siciliano ◽  
Filippo Menolascina ◽  
Lucia Marucci ◽  
Chiara Fracassi ◽  
Immacolata Garzilli ◽  
...  

2015 ◽  
Vol 113 (1) ◽  
pp. 26-38 ◽  
Author(s):  
Amanda M. Lewis ◽  
Nicholas R. Abu-Absi ◽  
Michael C. Borys ◽  
Zheng Jian Li

2019 ◽  
Vol 13 (1) ◽  
pp. 36-42 ◽  
Author(s):  
FITHRIYAH SJATHA ◽  
◽  
OKTIVIA CHANDRA MUSTIKA ◽  
ANGKY BUDIANTI ◽  
TJAHJANI MIRAWATI SUDIRO ◽  
...  

Intervirology ◽  
1980 ◽  
Vol 13 (6) ◽  
pp. 331-341 ◽  
Author(s):  
Arthur H. Mclntosh ◽  
Rebecca Shamy

1992 ◽  
Vol 12 (12) ◽  
pp. 5536-5540
Author(s):  
R J Boorstein ◽  
L N Chiu ◽  
G W Teebor

We isolated a mutant mammalian cell line lacking activity for the DNA repair enzyme 5-hydroxymethyluracil-DNA glycosylase (HmUra-DNA glycosylase). The mutant was isolated through its resistance to the thymidine analog 5-hydroxymethyl-2'-deoxyuridine (HmdUrd). The mutant incorporates HmdUrd into DNA to the same extent as the parent line but, lacking the repair enzyme, does not remove it. The phenotype of the mutant demonstrates that the toxicity of HmdUrd does not result from substitution of thymine in DNA by HmUra but rather from the removal via base excision of large numbers of HmUra residues in DNA. This finding elucidates a novel mechanism of toxicity for a xenobiotic nucleoside. Furthermore, the isolation of this line supports our hypothesis that the enzymatic repairability of HmUra derives not from its formation opposite adenine via the oxidation of thymine, but rather from its formation opposite guanine as a product of the oxidation and subsequent deamination of 5-methylcytosine.


2001 ◽  
Vol 21 (16) ◽  
pp. 5952-5961 ◽  
Author(s):  
Theodore R. Cummins ◽  
Fabio Aglieco ◽  
Mathurkrisnan Renganathan ◽  
Raimund I. Herzog ◽  
Sulayman D. Dib-Hajj ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document