scholarly journals Challenging the Existing Model of the Hexameric HIV-1 Gag Lattice and MA Shell Superstructure: Implications for Viral Entry

Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1515
Author(s):  
Joy Ramielle L. Santos ◽  
Weijie Sun ◽  
Tarana A. Mangukia ◽  
Eduardo Reyes-Serratos ◽  
Marcelo Marcet-Palacios

Despite type 1 human immunodeficiency virus (HIV-1) being discovered in the early 1980s, significant knowledge gaps remain in our understanding of the superstructure of the HIV-1 matrix (MA) shell. Current viral assembly models assume that the MA shell originates via recruitment of group-specific antigen (Gag) polyproteins into a hexagonal lattice but fails to resolve and explain lattice overlapping that occurs when the membrane is folded into a spherical/ellipsoidal shape. It further fails to address how the shell recruits, interacts with and encompasses the viral spike envelope (Env) glycoproteins. These Env glycoproteins are crucial as they facilitate viral entry by interacting with receptors and coreceptors located on T-cells. In our previous publication, we proposed a six-lune hosohedral structure, snowflake-like model for the MA shell of HIV-1. In this article, we improve upon the six-lune hosohedral structure by incorporating into our algorithm the recruitment of complete Env glycoproteins. We generated the Env glycoprotein assembly using a combination of predetermined Env glycoprotein domains from X-ray crystallography, nuclear magnetic resonance (NMR), cryoelectron tomography, and three-dimensional prediction tools. Our novel MA shell model comprises 1028 MA trimers and 14 Env glycoproteins. Our model demonstrates the movement of Env glycoproteins in the interlunar spaces, with effective clustering at the fusion hub, where multiple Env complexes bind to T-cell receptors during the process of viral entry. Elucidating the HIV-1 MA shell structure and its interaction with the Env glycoproteins is a key step toward understanding the mechanism of HIV-1 entry.

1998 ◽  
Vol 72 (11) ◽  
pp. 9337-9344 ◽  
Author(s):  
Yi-jun Zhang ◽  
Tatjana Dragic ◽  
Yunzhen Cao ◽  
Leondios Kostrikis ◽  
Douglas S. Kwon ◽  
...  

ABSTRACT We have tested a panel of pediatric and adult human immunodeficiency virus type 1 (HIV-1) primary isolates for the ability to employ the following proteins as coreceptors during viral entry: CCR1, CCR2b, CCR3, CCR4, CCR5, CCR8, CXCR4, Bonzo, BOB, GPR1, V28, US28, and APJ. Most non-syncytium-inducing isolates could utilize only CCR5. All syncytium-inducing viruses used CXCR4, some also employed V28, and one (DH123) used CCR8 and APJ as well. A longitudinal series of HIV-1 subtype B isolates from an infected infant and its mother utilized Bonzo efficiently, as well as CCR5. The maternal isolates, which were syncytium inducing, also used CXCR4, CCR8, V28, and APJ.


2000 ◽  
Vol 74 (11) ◽  
pp. 5373-5376 ◽  
Author(s):  
Andreas Bültmann ◽  
Josef Eberle ◽  
Jürgen Haas

ABSTRACT Expression of the human immunodeficiency virus type 1 (HIV-1) Env glycoprotein is stringently regulated in infected cells. The majority of the glycoprotein does not reach the cell surface but rather is retained in the endoplasmic reticulum or a cis-Golgi compartment and subsequently degraded. We here report that Env of various HIV-1 isolates is ubiquitinated at the extracellular domain of gp41 and that Env expression could be increased by lactacystin, a specific proteasome inhibitor, suggesting that the ubiquitin/proteasome system is involved in control of expression and degradation.


2001 ◽  
Vol 75 (9) ◽  
pp. 4308-4320 ◽  
Author(s):  
Robin L. Cotter ◽  
Jialin Zheng ◽  
Myhanh Che ◽  
Douglas Niemann ◽  
Ying Liu ◽  
...  

ABSTRACT Mononuclear phagocytes (MP) and T lymphocytes play a pivotal role in the host immune response to human immunodeficiency virus type 1 (HIV-1) infection. Regulation of such immune responses can be mediated, in part, through the interaction of the T-lymphocyte-expressed molecule CD40 ligand (CD40L) with its receptor on MP, CD40. Upregulation of CD40L on CD4+ peripheral blood mononuclear cells during advanced HIV-1 disease has previously been reported. Based on this observation, we studied the influence of CD40L-CD40 interactions on MP effector function and viral regulation in vitro. We monitored productive viral infection, cytokine and β-chemokine production, and β-chemokine receptor expression in monocyte-derived macrophages (MDM) after treatment with soluble CD40L. Beginning 1 day after infection and continuing at 3-day intervals, treatment with CD40L inhibited productive HIV-1 infection in MDM in a dose-dependent manner. A concomitant and marked upregulation of β-chemokines (macrophage inhibitory proteins 1α and 1β and RANTES [regulated upon activation normal T-cell expressed and secreted]) and the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) was observed in HIV-1-infected and CD40L-treated MDM relative to either infected or activated MDM alone. The addition of antibodies to RANTES or TNF-α led to a partial reversal of the CD40L-mediated inhibition of HIV-1 infection. Surface expression of CD4 and the β-chemokine receptor CCR5 was reduced on MDM in response to treatment with CD40L. In addition, treatment of CCR5- and CD4-transfected 293T cells with secretory products from CD40L-stimulated MDM prior to infection with a CCR5-tropic HIV-1 reporter virus led to inhibition of viral entry. In conclusion, we demonstrate that CD40L-mediated inhibition of viral entry coincides with a broad range of MDM immune effector responses and the down-modulation of CCR5 and CD4 expression.


2008 ◽  
Vol 82 (13) ◽  
pp. 6557-6565 ◽  
Author(s):  
Vanessa Arfi ◽  
Lise Rivière ◽  
Loraine Jarrosson-Wuillème ◽  
Caroline Goujon ◽  
Dominique Rigal ◽  
...  

ABSTRACT Blood-circulating monocytes migrate in tissues in response to danger stimuli and differentiate there into two major actors of the immune system: macrophages and dendritic cells. Given their migratory behavior and their pivotal role in the orchestration of immune responses, it is not surprising that cells of the monocyte lineage are the target of several viruses, including human immunodeficiency virus type 1 (HIV-1). HIV-1 replicates in monocytoid cells to an extent that is influenced by their differentiation status and modulated by exogenous stimulations. Unstimulated monocytes display a relative resistance to HIV infection mostly exerted during the early steps of the viral life cycle. Despite intensive studies, the identity of the affected step remains controversial, although it is generally assumed to take place after viral entry. We reexamine here the early steps of viral infection of unstimulated monocytes using vesicular stomatitis virus G protein-pseudotyped HIV-1 virions. Our data indicate that a first block to the early steps of infection of monocytes with these particles occurs at the level of viral entry. After entry, reverse transcription and integration proceed with extremely slow kinetics rather than being blocked. Once completed, viral DNA molecules delay entry into the nucleus and integration for up to 5 to 6 days. The inefficacy of these steps accounts for the resistance of monocytes to HIV-1 during the early steps of infection.


2003 ◽  
Vol 77 (19) ◽  
pp. 10528-10536 ◽  
Author(s):  
Qi Guo ◽  
Hsu-Tso Ho ◽  
Ira Dicker ◽  
Li Fan ◽  
Nannan Zhou ◽  
...  

ABSTRACT BMS-378806 is a recently discovered small-molecule human immunodeficiency virus type 1 (HIV-1) attachment inhibitor with good antiviral activity and pharmacokinetic properties. Here, we demonstrate that the compound targets viral entry by inhibiting the binding of the HIV-1 envelope gp120 protein to cellular CD4 receptors via a specific and competitive mechanism. BMS-378806 binds directly to gp120 at a stoichiometry of approximately 1:1, with a binding affinity similar to that of soluble CD4. The potential BMS-378806 target site was localized to a specific region within the CD4 binding pocket of gp120 by using HIV-1 gp120 variants carrying either compound-selected resistant substitutions or gp120-CD4 contact site mutations. Mapping of resistance substitutions to the HIV-1 envelope, and the lack of compound activity against a CD4-independent viral infection confirm the gp120-CD4 interactions as the target in infected cells. BMS-378806 therefore serves as a prototype for this new class of antiretroviral agents and validates gp120 as a viable target for small-molecule inhibitors.


2010 ◽  
Vol 84 (17) ◽  
pp. 8990-8995 ◽  
Author(s):  
Matthew S. Henning ◽  
Scott G. Morham ◽  
Stephen P. Goff ◽  
Mojgan H. Naghavi

ABSTRACT In a yeast two-hybrid screen for cellular factors that could interact with human immunodeficiency virus type 1 (HIV-1) Gag protein, we identified PDZD8 and confirmed the interaction by coimmunoprecipitation (co-IP). PDZD8 overexpression promoted the initiation of reverse transcription and increased infection by pseudotyped retroviruses independent of the route of viral entry, while transient knockdown of endogenous levels decreased HIV-1 infection. A mutant of PDZD8 lacking a predicted coiled-coil domain in its Gag-interacting region failed to bind Gag and promote HIV-1 infection, identifying the domain of PDZD8 required for mediating these effects. As such, we identify PDZD8 as a novel positive mediator of retroviral infection.


2001 ◽  
Vol 75 (22) ◽  
pp. 10808-10814 ◽  
Author(s):  
Norbert Bannert ◽  
Michael Farzan ◽  
Daniel S. Friend ◽  
Hiroshi Ochi ◽  
Kursteen S. Price ◽  
...  

ABSTRACT Mast cells are critical components of innate and adaptive immunity that differentiate in tissues in situ from circulating committed progenitor cells. We now demonstrate that human cord blood-derived mast cell progenitors are susceptible to infection with macrophagetropic (M-tropic) and dualtropic human immunodeficiency virus type 1 (HIV-1) isolates but not with T-cell-tropic (T-tropic) strains. Mast cell progenitors (c-kit + CD13+ cells with chloroacetate esterase activity) were purified from 4-week-old cultures of cord blood mononuclear cells maintained in stem cell factor, interleukin-6 (IL-6), and IL-10 using a CD14 depletion column. These progenitors expressed CCR3, CCR5, and CXCR4, as well as low levels of CD4. When infected in vitro with viruses pseudotyped with different HIV and simian immunodeficiency virus envelope glycoproteins, only M-tropic and dualtropic, but not T-tropic, viruses were able to enter mast cell progenitors. Both the CCR5-specific monoclonal antibody 2D7 and TAK-779, a nonpeptide inhibitor of CCR5-mediated viral entry, blocked HIV-1 strain ADA infection by >80%. Cultures infected with replication-competent virus produced progressively increasing amounts of virus for 21 days as indicated by p24 antigen detection. Mast cell progenitors that were exposed to an M-tropic, green fluorescent protein-expressing HIV-1 strain exhibited fluorescence indicative of viral entry and replication on a single-cell level and retained virus production during differentiation. The trafficking of mast cell progenitors to multiple tissues, combined with the long life span of mature mast cells, suggests that they could provide a widespread and persistent HIV reservoir in AIDS.


2003 ◽  
Vol 77 (20) ◽  
pp. 11244-11259 ◽  
Author(s):  
Indresh K. Srivastava ◽  
Leonidas Stamatatos ◽  
Elaine Kan ◽  
Michael Vajdy ◽  
Ying Lian ◽  
...  

ABSTRACT The envelope (Env) glycoprotein of human immunodeficiency virus type 1 (HIV-1) is the major target of neutralizing antibody responses and is likely to be a critical component of an effective vaccine against AIDS. Although monomeric HIV envelope subunit vaccines (gp120) have induced high-titer antibody responses and neutralizing antibodies against laboratory-adapted HIV-1 strains, they have failed to induce neutralizing antibodies against diverse heterologous primary HIV isolates. Most probably, the reason for this failure is that the antigenic structure(s) of these previously used immunogens does not mimic that of the functional HIV envelope, which is a trimer, and thus these immunogens do not elicit high titers of relevant functional antibodies. We recently reported that an Env glycoprotein immunogen (o-gp140SF162ΔV2) containing a partial deletion in the second variable loop (V2) derived from the R5-tropic HIV-1 isolate SF162, when used in a DNA priming-protein boosting vaccine regimen in rhesus macaques, induced neutralizing antibodies against heterologous subtype B primary isolates as well as protection to the vaccinated animals upon challenge with pathogenic SHIVSF162P4 virus. Here we describe the purification of this protein to homogeneity, its characterization as trimer, and its ability to induce primary isolate-neutralizing responses in rhesus macaques. Optimal mutations in the primary and secondary protease cleavage sites of the env gene were identified that resulted in the stable secretion of a trimeric Env glycoprotein in mammalian cell cultures. We determined the molecular mass and hydrodynamic radius (R h ) using a triple detector analysis (TDA) system. The molecular mass of the oligomer was found to be 324 kDa, close to the expected M w of a HIV envelope trimer protein (330 kDa), and the hydrodynamic radius was 7.27 nm. Negative staining electron microscopy of o-gp140SF162ΔV2 showed that it is a trimer with considerable structural flexibility and supported the data obtained by TDA. The structural integrity of the purified trimeric protein was also confirmed by determinations of its ability to bind the HIV receptor, CD4, and its ability to bind a panel of well-characterized neutralizing monoclonal antibodies. No deleterious effect of V2 loop deletion was observed on the structure and conformation of the protein, and several critical neutralization epitopes were preserved and well exposed on the purified o-gp140SF162ΔV2 protein. In an intranasal priming and intramuscular boosting regimen, this protein induced high titers of functional antibodies, which neutralized the vaccine strain, i.e., SF162. These results highlight a potential role for the trimeric o-gp140SF162ΔV2 Env immunogen in a successful HIV vaccine.


2003 ◽  
Vol 77 (7) ◽  
pp. 4409-4414 ◽  
Author(s):  
Brett M. Forshey ◽  
Christopher Aiken

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) virulence factor Nef enhances viral infectivity in single-cycle infection assays and accelerates HIV-1 replication in vitro. It has been reported that the effects of Nef are mediated early after viral entry and before the completion of reverse transcription, as viral DNA synthesis is strongly attenuated during infection by Nef-defective virions. Our previous work has demonstrated that Nef is associated with mature HIV-1 cores, implicating Nef in the regulation of HIV-1 core stability. Here we report a comparative analysis of HIV-1 cores isolated from wild-type and Nef-defective particles. We observed no effect of Nef on HIV-1 core structure or stability; however, Nef cosedimented with a subviral ribonucleoprotein complex following dissociation of CA. These results indicate that Nef interacts tightly with an internal component of the HIV-1 core. They further suggest that virion-associated Nef may facilitate an early step in HIV-1 infection following dissociation of the viral capsid in the target cell.


Sign in / Sign up

Export Citation Format

Share Document