scholarly journals Mass Spectrometry-Based System for Identifying and Typing Norovirus Major Capsid Protein VP1

Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2332
Author(s):  
Pei-Yu Chu ◽  
Hui-Wen Huang ◽  
Michittra Boonchan ◽  
Yu-Chang Tyan ◽  
Kevin Leroy Louis ◽  
...  

Norovirus-associated diseases are the most common foodborne illnesses worldwide. Polymerase chain reaction-based methods are the primary diagnostics for clinical samples; however, the high mutation rate of norovirus makes viral amplification and genotyping challenging. Technological advances in mass spectrometry (MS) make it a promising tool for identifying disease markers. Besides, the superior sensitivity of MS and proteomic approaches may enable the detection of all variants. Thus, this study aimed to establish an MS-based system for identifying and typing norovirus. We constructed three plasmids containing the major capsid protein VP1 of the norovirus GII.4 2006b, 2006a, and 2009a strains to produce virus-like particles for use as standards. Digested peptide signals were collected using a nano-flow ultra-performance liquid chromatography mass spectrometry (nano-UPLC/MSE) system, and analyzed by ProteinLynx Global SERVER and TREE-PUZZLE software. Results revealed that the LC/MSE system had an excellent coverage rate: the system detected more than 94% of amino acids of 3.61 femtomole norovirus VP1 structural protein. In the likelihood-mapping analysis, the proportions of unresolved quartets were 2.9% and 4.9% in the VP1 and S domains, respectively, which is superior to the 15.1% unresolved quartets in current PCR-based methodology. In summary, the use of LC/MSE may efficiently monitor genotypes, and sensitively detect structural and functional mutations of noroviruses.

Author(s):  
Eric A. Iverson ◽  
David A. Goodman ◽  
Madeline E. Gorchels ◽  
Kenneth M. Stedman

Viruses with spindle or lemon-shaped virions are rare in the world of viruses, but are common in viruses of archaeal extremophiles, possibly due to the extreme conditions in which they thrive. However, the structural and genetic basis for the unique spindle shape is unknown. The best-studied spindle-shaped virus, SSV1, is composed mostly of the major capsid protein VP1. Similar to many other viruses, proteolytic cleavage of VP1 is thought to be critical for virion formation. Unlike half of the genes in SSV1, including the minor capsid protein gene vp3, the vp1 gene does not tolerate deletion or transposon insertion. In order determine the role of the vp1 gene and its proteolysis for virus function, we developed techniques for site-directed mutagenesis of the SSV1 genome and complemented deletion mutants with vp1 genes from other SSVs. By analyzing these mutants we demonstrate that the N-terminus of the VP1 protein is required, but the N-terminus, or entire SSV1 VP1 protein, can be exchanged with VP1s from other SSVs. However, the conserved glutamate at the cleavage site is not essential for infectivity. Interestingly, viruses containing point mutations at this position generate mostly abnormal virions.


Author(s):  
Eric A. Iverson ◽  
David A. Goodman ◽  
Madeline E. Gorchels ◽  
Kenneth M. STEDMAN

Viruses with spindle or lemon-shaped virions are rare in the world of viruses, but are common in viruses of archaeal extremophiles, possibly due to the extreme conditions in which they thrive. However, the structural and genetic basis for the unique spindle shape is unknown. The best-studied spindle-shaped virus, SSV1, is composed mostly of the major capsid protein VP1. Similar to many other viruses, proteolytic cleavage of VP1 is thought to be critical for virion formation. Unlike half of the genes in SSV1, including the minor capsid protein VP3, the vp1 gene does not tolerate deletion or transposon insertion. In order determine the role of the vp1 gene and its proteolysis for virus function, we developed techniques for site-directed mutagenesis of the SSV1 genome and complemented deletion mutants with vp1 genes from other SSVs. By analyzing these mutants we demonstrate that the N-terminus of the VP1 protein is required, but the N-terminus, or entire SSV1 VP1 protein, can be exchanged with VP1s from other SSVs. However, the conserved glutamate at the cleavage site is not essential. Interestingly, viruses containing point mutations at this position generate mostly abnormal virions.


2004 ◽  
Vol 85 (5) ◽  
pp. 1251-1257 ◽  
Author(s):  
Ian H. Maxwell ◽  
Françoise Maxwell

Human cell lines are permissive for LuIII, a member of the rodent group of autonomous parvoviruses. However, LuIII vectors pseudotyped with feline panleukopaenia virus (FPV) capsid proteins can transduce feline cells but not human cells. Feline transferrin receptor (FelTfR) functions as a receptor for FPV. Transfection of Rh18A, a human rhabdomyosarcoma cell line, with FelTfR enabled transduction by vector with FPV capsid. This was not true of other human lines, suggesting restriction at some additional, post-entry, level(s) in human cells other than Rh18A. It seemed a reasonable hypothesis that a second blockage might be in nuclear delivery mediated by the N-terminal region of the minor capsid protein, VP1. We therefore generated virions containing an LuIII–luciferase genome, packaged using chimaeric VP1 molecules (N-terminal region of LuIII VP1, fused with body of FPV, and vice versa) together with the major capsid protein, VP2, of FPV or LuIII. The virions were tested for ability to transduce feline and human cells. Our hypothesis predicted that the N-terminal region of LuIII VP1 should allow transduction of human cells expressing FelTfR, while the FPV N-terminal region should not allow transduction of human cells (except for Rh18A). The experimental results did not bear out either of these predictions. Therefore, the VP1 N-terminal region appears not to be a major determinant of permissiveness for LuIII, versus FPV, capsid in human cells.


2021 ◽  
Author(s):  
Manisha Rani ◽  
Sushma Rajyalakshmi ◽  
Sunitha Pakalapaty ◽  
Nagamani Kammilli

Norovirus are a major cause of acute gastroenteritis worldwide. Diarrheal disease is now the fourth common cause of mortality children under the age of 5 years but remain the 2nd most cause of morbidity. NoV are associated with 18% diarrheal diseases worldwide where rotavirus vaccinations has been successfully introduced. NoV has become major cause of gastroenteritis in children. NoV belong to family caliciviridae. They are non-enveloped, single stranded positive sense RNA Viruses. The genome consists of 3 Open reading frames, ORF-1 codes for non-structural protein, ORF-2 codes for major capsid protein VP1 and ORF-3 for minor capsid protein VP2. Based on sequence difference of the capsid gene (VP1), NoV have been classified in to seven genogroup GI-GVII with over 30 genotypes. Genogroups I, II, IV are associated with human infection. Despite this extensive diversity a single genotype GII.4 has been alone to be the more prevalent. Basic epidemiological disease burden data are generated from developing countries. NoV are considered fast evolving viruses and present an extensive diversity that is driven by acquisition of point mutations and recombinations. Immunity is strain or genotype specific with little or no protection conferred across genogroups. Majority of outbreaks and sporadic norovirus cases worldwide are associated with a single genotype, GII.4 which was responsible for 62% of reported NoV outbreaks in 5 continents from 2001 to 2007. GII.4 variants have been reported as major cause of global gastroenteritis pandemics starting in 1995 frequent emergence of novel GII.4 variants is known to be due to rapid evolution and antigenic variation in response to herd immunity. Novel GII.4 variants appear almost every 2 years. Recent GII.4 variant reported include Lordsdale 1996, Farmington Hills 2002, Hunter 2004, Yerseke 2006a, Den Haag 2006b, Apeldoon 2007, New Orleans 2009,most recently Sydney 2012. Detailed molecular epidemiologic investigation of NoV is associated for understanding the genetic diversity of NoV strain and emergence of novel NoV variants. However, reports have revealed that not all individuals develop symptoms and a significant proportion remains asymptomatic after NoV infections.


Sign in / Sign up

Export Citation Format

Share Document