scholarly journals Viral Vectors for the Induction of Broadly Neutralizing Antibodies against HIV

Vaccines ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 119 ◽  
Author(s):  
Sarah Wilmschen ◽  
Joern E. Schmitz ◽  
Janine Kimpel

Extensive research on generating an efficient HIV vaccine is ongoing. A major aim of HIV vaccines is the induction of long-lasting, broadly neutralizing antibodies (bnAbs) that can confer sterile immunity for a prolonged period of time. Several strategies have been explored to reach this goal, i.e. protein immunization, DNA, or viral vectors, or a combination thereof. In this review, we give an overview of approaches using viral vectors for the induction of HIV-specific bnAbs. Many pre-clinical studies were performed using various replication-competent and -incompetent vectors. Amongst them, poxviral and adenoviral vectors were the most prevalent ones. In many studies, viral vectors were combined with a DNA prime or a protein boost. However, neutralizing antibodies were mainly induced against the homologous HIV-1 vaccine strain or tier 1 viruses, and in rare cases, against tier 2 viruses, indicating the need for improved antigens and vaccination strategies. Furthermore, we also review next generation Env antigens that are currently being used in protein vaccination approaches and point out how they could be utilized in viral vectors.

2018 ◽  
Vol 92 (13) ◽  
pp. e00369-18 ◽  
Author(s):  
Christine A. Bricault ◽  
James M. Kovacs ◽  
Alexander Badamchi-Zadeh ◽  
Krisha McKee ◽  
Jennifer L. Shields ◽  
...  

ABSTRACTA vaccination regimen capable of eliciting potent and broadly neutralizing antibodies (bNAbs) remains an unachieved goal of the HIV-1 vaccine field. Here, we report the immunogenicity of longitudinal prime/boost vaccination regimens with a panel of HIV-1 envelope (Env) gp140 protein immunogens over a period of 200 weeks in guinea pigs. We assessed vaccine regimens that included a monovalent clade C gp140 (C97ZA012 [C97]), a tetravalent regimen consisting of four clade C gp140s (C97ZA012, 459C, 405C, and 939C [4C]), and a tetravalent regimen consisting of clade A, B, C, and mosaic gp140s (92UG037, PVO.4, C97ZA012, and Mosaic 3.1, respectively [ABCM]). We found that the 4C and ABCM prime/boost regimens were capable of eliciting greater magnitude and breadth of binding antibody responses targeting variable loop 2 (V2) over time than the monovalent C97-only regimen. The longitudinal boosting regimen conducted over more than 2 years increased the magnitude of certain tier 1 NAb responses but did not increase the magnitude or breadth of heterologous tier 2 NAb responses. These data suggest that additional immunogen design strategies are needed to induce broad, high-titer tier 2 NAb responses.IMPORTANCEThe elicitation of potent, broadly neutralizing antibodies (bNAbs) remains an elusive goal for the HIV-1 vaccine field. In this study, we explored the use of a long-term vaccination regimen with different immunogens to determine if we could elicit bNAbs in guinea pigs. We found that longitudinal boosting over more than 2 years increased tier 1 NAb responses but did not increase the magnitude and breadth of tier 2 NAb responses. These data suggest that additional immunogen designs and vaccination strategies will be necessary to induce broad tier 2 NAb responses.


2017 ◽  
Vol 91 (10) ◽  
Author(s):  
Gwo-Yu Chuang ◽  
Hui Geng ◽  
Marie Pancera ◽  
Kai Xu ◽  
Cheng Cheng ◽  
...  

ABSTRACT The HIV-1 envelope (Env) trimer is a target for vaccine design as well as a conformational machine that facilitates virus entry by transitioning between prefusion-closed, CD4-bound, and coreceptor-bound conformations by transitioning into a postfusion state. Vaccine designers have sought to restrict the conformation of the HIV-1 Env trimer to its prefusion-closed state as this state is recognized by most broadly neutralizing, but not nonneutralizing, antibodies. We previously identified a disulfide bond, I201C-A433C (DS), which stabilizes Env in the vaccine-desired prefusion-closed state. When placed into the context of BG505 SOSIP.664, a soluble Env trimer mimic developed by Sanders, Moore, and colleagues, the engineered DS-SOSIP trimer showed reduced conformational triggering by CD4. Here, we further stabilize DS-SOSIP through a combination of structure-based design and 96-well-based expression and antigenic assessment. From 103 designs, we identified one, named DS-SOSIP.4mut, with four additional mutations at the interface of potentially mobile domains of the prefusion-closed structure. We also determined the crystal structures of DS-SOSIP.4mut at 4.1-Å resolution and of an additional DS-SOSIP.6mut variant at 4.3-Å resolution, and these confirmed the formation of engineered disulfide bonds. Notably, DS-SOSIP.4mut elicited a higher ratio of tier 2 autologous titers versus tier 1 V3-sensitive titers than BG505 SOSIP.664. DS-SOSIP.4mut also showed reduced recognition of CD4 and increased thermostability. The improved antigenicity, thermostability, and immunogenicity of DS-SOSIP.4mut suggest utility as an immunogen or a serologic probe; moreover, the specific four alterations identified here, M154, M300, M302, and L320 (4mut), can also be transferred to other HIV-1 Env trimers of interest to improve their properties. IMPORTANCE One approach to elicit broadly neutralizing antibodies against HIV-1 is to stabilize the structurally flexible HIV-1 envelope (Env) trimer in a conformation that displays predominantly broadly neutralizing epitopes and few to no nonneutralizing epitopes. The prefusion-closed conformation of HIV-1 Env has been identified as one such preferred conformation, and a current leading vaccine candidate is the BG505 DS-SOSIP variant, comprising two disulfides and an Ile-to-Pro mutation of Env from strain BG505. Here, we introduced additional mutations to further stabilize BG505 DS-SOSIP in the vaccine-preferred prefusion-closed conformation. In guinea pigs, our best mutant, DS-SOSIP.4mut, elicited a significantly higher ratio of autologous versus V3-directed neutralizing antibody responses than the SOSIP-stabilized form. We also observed an improvement in thermostability and a reduction in CD4 affinity. With improved antigenicity, stability, and immunogenicity, DS-SOSIP.4mut-stabilized trimers may have utility as HIV-1 immunogens or in other antigen-specific contexts, such as with B-cell probes.


Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 171
Author(s):  
Rita Calado ◽  
Joana Duarte ◽  
Pedro Borrego ◽  
José Maria Marcelino ◽  
Inês Bártolo ◽  
...  

Development of new immunogens eliciting broadly neutralizing antibodies (bNAbs) is a main priority for the HIV-1 vaccine field. Envelope glycoproteins from non-B-non-C HIV-1clades have not been fully explored as components of a vaccine. We produced Vaccinia viruses expressing a truncated version of gp120 (gp120t) from HIV-1 clades CRF02_AG, H, J, B, and C and examined their immunogenicity in mice and rabbits. Mice primed with the recombinant Vaccinia viruses and boosted with the homologous gp120t or C2V3C3 polypeptides developed antibodies that bind potently to homologous and heterologous envelope glycoproteins. Notably, a subset of mice immunized with the CRF02_AG-based envelope immunogens developed a cross-reactive neutralizing response against tier 2 HIV-1 Env-pseudoviruses and primary isolates. Rabbits vaccinated with the CRF02_AG-based envelope immunogens also generated potent binding antibodies, and one animal elicited antibodies that neutralized almost all (13 of 16, 81.3%) tier 2 HIV-1 isolates tested. Overall, the results suggest that the novel CRF02_AG-based envelope immunogens and prime-boost immunization strategy elicit the type of immune responses required for a preventive HIV-1 vaccine.


2015 ◽  
Vol 89 (8) ◽  
pp. 4158-4169 ◽  
Author(s):  
Sachin Gupta ◽  
Emily S. Clark ◽  
James M. Termini ◽  
Justin Boucher ◽  
Saravana Kanagavelu ◽  
...  

ABSTRACTBroadly neutralizing antibodies (bNAbs) specific for conserved epitopes on the HIV-1 envelope (Env) are believed to be essential for protection against multiple HIV-1 clades. However, vaccines capable of stimulating the production of bNAbs remain a major challenge. Given that polyreactivity and autoreactivity are considered important characteristics of anti-HIV bNAbs, we designed an HIV vaccine incorporating the molecular adjuvants BAFF (B cell activating factor) and APRIL (a proliferation-inducing ligand) with the potential to facilitate the maturation of polyreactive and autoreactive B cells as well as to enhance the affinity and/or avidity of Env-specific antibodies. We designed recombinant DNA plasmids encoding soluble multitrimers of BAFF and APRIL using surfactant protein D as a scaffold, and we vaccinated mice with these molecular adjuvants using DNA and DNA-protein vaccination strategies. We found that immunization of mice with a DNA vaccine encoding BAFF or APRIL multitrimers, together with interleukin 12 (IL-12) and membrane-bound HIV-1 Env gp140, induced neutralizing antibodies against tier 1 and tier 2 (vaccine strain) viruses. The APRIL-containing vaccine was particularly effective at generating tier 2 neutralizing antibodies following a protein boost. These BAFF and APRIL effects coincided with an enhanced germinal center (GC) reaction, increased anti-gp120 antibody-secreting cells, and increased anti-gp120 functional avidity. Notably, BAFF and APRIL did not cause indiscriminate B cell expansion or an increase in total IgG. We propose that BAFF and APRIL multitrimers are promising molecular adjuvants for vaccines designed to induce bNAbs against HIV-1.IMPORTANCERecent identification of antibodies that neutralize most HIV-1 strains has revived hopes and efforts to create novel vaccines that can effectively stimulate HIV-1 neutralizing antibodies. However, the multiple immune evasion properties of HIV have hampered these efforts. These include the instability of the gp120 trimer, the inaccessibility of the conserved sequences, highly variable protein sequences, and the loss of HIV-1-specific antibody-producing cells during development. We have shown previously that tumor necrosis factor (TNF) superfamily ligands, including BAFF and APRIL, can be multitrimerized using the lung protein SP-D (surfactant protein D), enhancing immune responses. Here we show that DNA or DNA-protein vaccines encoding BAFF or APRIL multitrimers, IL-12p70, and membrane-bound HIV-1 Env gp140 induced tier 1 and tier 2 neutralizing antibodies in a mouse model. BAFF and APRIL enhanced the immune reaction, improved antibody binding, and increased the numbers of anti-HIV-1 antibody-secreting cells. Adaptation of this vaccine design may prove useful in designing preventive HIV-1 vaccines for humans.


2017 ◽  
Vol 91 (15) ◽  
Author(s):  
Rajesh P. Ringe ◽  
Gabriel Ozorowski ◽  
Kimmo Rantalainen ◽  
Weston B. Struwe ◽  
Katie Matthews ◽  
...  

ABSTRACT Native-like trimers of the SOSIP design are being developed as immunogens in human immunodeficiency virus type 1 (HIV-1) vaccine development programs. These trimers display the epitopes for multiple broadly neutralizing antibodies (bNAbs) but can also expose binding sites for some types of nonneutralizing antibodies (non-NAbs). Among the latter are epitopes in the gp120 V3 region that are highly immunogenic when SOSIP trimers are evaluated in animal models. It is presently uncertain whether antibodies against V3 can interfere with the induction of NAbs, but there are good arguments in favor of suppressing such “off-target” immune responses. Accordingly, we have assessed how to minimize the exposure of V3 non-NAb epitopes and thereby reduce their immunogenicity by introducing N-glycans within the V3 region of BG505 SOSIP trimers. We found that inserting glycans at positions 306 and 314 (termed M1 and M7) markedly reduced V3 antigenicity while improving the presentation of trimer apex bNAb epitopes. Both added glycans were shown to be predominantly of the Man6GlcNAc2 form. The additional introduction of the E64K ground-state stabilizing substitution markedly reduced or ablated soluble CD4 (sCD4) induction of non-NAb epitopes in V3 and/or associated with the coreceptor binding site. When a V3 glycan- and E64K-modified trimer variant, BG505 SOSIP.664-E64K.M1M7, was tested in rabbits, V3 immunogenicity was eliminated while the autologous NAb response was unchanged. IMPORTANCE Trimeric proteins are being developed for future HIV-1 vaccine trials in humans, with the goal of eliciting broadly active neutralizing antibodies (NAbs) that are active against a wide variety of circulating strains. In animal models, the present generation of native-like trimer immunogens, exemplified by the BG505 SOSIP.664 construct, induces narrow-specificity antibodies against the neutralization-resistant (tier-2), sequence-matched virus and more broadly active antibodies against sequence-divergent atypically neutralization-sensitive (tier-1) viruses. A concern in the trimer immunogen design field has been whether the latter off-target antibodies might interfere with the induction of the more desired responses to tier-2 epitopes. Here, we have inserted two glycans into the dominant site for tier-1 NAbs, the gp120 V3 region, to block the induction of off-target antibodies. We characterized the new trimers, tested them as immunogens in rabbits, and found that the blocking glycans eliminated the induction of tier-1 NAbs to V3-epitopes.


2010 ◽  
Vol 84 (7) ◽  
pp. 3270-3279 ◽  
Author(s):  
Joseph P. Nkolola ◽  
Hanqin Peng ◽  
Ethan C. Settembre ◽  
Michael Freeman ◽  
Lauren E. Grandpre ◽  
...  

ABSTRACT The native envelope (Env) spike on the surface of human immunodeficiency virus type 1 (HIV-1) is trimeric, and thus trimeric Env vaccine immunogens are currently being explored in preclinical immunogenicity studies. Key challenges have included the production and purification of biochemically homogeneous and stable trimers and the evaluation of these immunogens utilizing standardized virus panels for neutralization assays. Here we report the binding and neutralizing antibody (NAb) responses elicited by clade A (92UG037.8) and clade C (CZA97.012) Env gp140 trimer immunogens in guinea pigs. These trimers have been selected and engineered for optimal biochemical stability and have defined antigenic properties. Purified gp140 trimers with Ribi adjuvant elicited potent, cross-clade NAb responses against tier 1 viruses as well as detectable but low-titer NAb responses against select tier 2 viruses from clades A, B, and C. In particular, the clade C trimer elicited NAbs that neutralized 27%, 20%, and 47% of tier 2 viruses from clades A, B, and C, respectively. Heterologous DNA prime, protein boost as well as DNA prime, recombinant adenovirus boost regimens expressing these antigens, however, did not result in an increased magnitude or breadth of NAb responses in this system. These data demonstrate the immunogenicity of stable, homogeneous clade A and clade C gp140 trimers and exemplify the utility of standardized tier 1 and tier 2 virus panels for assessing the NAb responses of candidate HIV-1 Env immunogens.


2016 ◽  
Vol 90 (11) ◽  
pp. 5231-5245 ◽  
Author(s):  
V. Sanchez-Merino ◽  
A. Fabra-Garcia ◽  
N. Gonzalez ◽  
D. Nicolas ◽  
A. Merino-Mansilla ◽  
...  

ABSTRACTA fraction of HIV-1 patients are able to generate broadly neutralizing antibodies (bNAbs) after 2 to 4 years of infection. In rare occasions such antibodies are observed close to the first year of HIV-1 infection but never within the first 6 months. In this study, we analyzed the neutralization breadth of sera from 157 antiretroviral-naive individuals who were infected for less than 1 year. A range of neutralizing activities was observed with a previously described panel of six recombinant viruses from five different subtypes (M. Medina-Ramirez et al., J Virol85:5804–5813, 2011,http://dx.doi.org/10.1128/JVI.02482-10). Some sera were broadly reactive, predominantly targeting envelope epitopes within the V2 glycan-dependent region. The neutralization breadth was positively associated with time postinfection (P= 0.0001), but contrary to what has been reported for chronic infections, no association with the viral load was observed. Notably, five individuals within the first 6 months of infection (two as early as 77 and 96 days postinfection) showed substantial cross-neutralization. This was confirmed with an extended panel of 20 Env pseudoviruses from four different subtypes (two in tier 3, 14 in tier 2, and four in tier 1). Sera from these individuals were capable of neutralizing viruses from four different subtypes with a geometric mean 50% infective dose (ID50) between 100 and 800. These results indicate that induction of cross-neutralizing responses, albeit rare, is achievable even within 6 months of HIV-1 infection. These observations encourage the search for immunogens able to elicit this kind of response in preventive HIV-1 vaccine approaches.IMPORTANCEThere are very few individuals able to mount broadly neutralizing activity (bNA) close to the first year postinfection. It is not known how early in the infection cross-neutralizing responses can be induced. In the present study, we show that bNAbs, despite being rare, can be induced much earlier than previously thought. The identification of HIV-1-infected patients with these activities within the first months of infection and characterization of these responses will help in defining new immunogen designs and neutralization targets for vaccine-mediated induction of bNAbs.


Author(s):  
Syed Iqbal Hussain ◽  
Nandagopal Panneerselvam ◽  
Suniti Solomon ◽  
Sunil S. Solomon ◽  
Kaavya Adam ◽  
...  

Identification of broadly neutralizing antibodies (NAbs) generated during the course of HIV-1 infection is essential for effective HIV-1 vaccine design. The magnitude and breadth of neutralizing activity in the sera from 46 antiretroviral treatment–naive HIV-1 clade C-infected individuals was measured in a single round infection assay using TZM-bl cells and multisubtype panel of env-pseudotyped viruses. Higher levels of NAb response (NAb titer 500 to >40 000) were measured in these patients against tier 1 and tier 2 viruses. The average magnitude of the NAb responses of chronically infected individuals against heterologous viruses was consistently higher than the response observed from individuals with long-term nonprogressor ( P = .086). To conclude, high titers of HIV-1 cross-neutralizing activity were observed in the sera from a subset of HIV-1-infected individuals in Chennai, India. Additional studies of the epitopes recognized by these antibodies may facilitate the discovery of an effective vaccine immunogen.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kun-Wei Chan ◽  
Christina C. Luo ◽  
Hong Lu ◽  
Xueling Wu ◽  
Xiang-Peng Kong

AbstractIdentification of vulnerable sites defined by broadly neutralizing antibodies (bNAbs) on HIV-1 envelope (Env) is crucial for vaccine design, and we present here a vulnerable site defined by bNAb M4008_N1, which neutralizes about 40% of a tier-2 virus panel. A 3.2 Å resolution cryo-EM structure of M4008_N1 in complex with BG505 DS-SOSIP reveals a large, shallow protein epitope surface centered at the V3 crown of gp120 and surrounded by key glycans. M4008_N1 interacts with gp120 primarily through its hammerhead CDR H3 to form a β-sheet interaction with the V3 crown hairpin. This makes M4008_N1 compatible with the closed conformation of the prefusion Env trimer, and thus distinct from other known V3 crown mAbs. This mode of bNAb approaching the immunogenic V3 crown in the native Env trimer suggests a strategy for immunogen design targeting this site of vulnerability.


2020 ◽  
Vol 94 (24) ◽  
Author(s):  
Anna Schorcht ◽  
Tom L. G. M. van den Kerkhof ◽  
Christopher A. Cottrell ◽  
Joel D. Allen ◽  
Jonathan L. Torres ◽  
...  

ABSTRACT The induction of broadly neutralizing antibodies (bNAbs) is a major goal in vaccine research. HIV-1-infected individuals that develop exceptionally strong bNAb responses, termed elite neutralizers, can inform vaccine design by providing blueprints for the induction of similar bNAb responses. We describe a new recombinant native-like envelope glycoprotein (Env) SOSIP trimer, termed AMC009, based on the viral founder sequences of an elite neutralizer. The subtype B AMC009 SOSIP protein formed stable native-like trimers that displayed multiple bNAb epitopes. Overall, its structure at 4.3-Å resolution was similar to that of BG505 SOSIP.664. The AMC009 trimer resembled one from a second elite neutralizer, AMC011, in having a dense and complete glycan shield. When tested as immunogens in rabbits, the AMC009 trimers did not induce autologous neutralizing antibody (NAb) responses efficiently while the AMC011 trimers did so very weakly, outcomes that may reflect the completeness of their glycan shields. The AMC011 trimer induced antibodies that occasionally cross-neutralized heterologous tier 2 viruses, sometimes at high titer. Cross-neutralizing antibodies were more frequently elicited by a trivalent combination of AMC008, AMC009, and AMC011 trimers, all derived from subtype B viruses. Each of these three individual trimers could deplete the NAb activity from the rabbit sera. Mapping the polyclonal sera by electron microscopy revealed that antibodies of multiple specificities could bind to sites on both autologous and heterologous trimers. These results advance our understanding of how to use Env trimers in multivalent vaccination regimens and the immunogenicity of trimers derived from elite neutralizers. IMPORTANCE Elite neutralizers, i.e., individuals who developed unusually broad and potent neutralizing antibody responses, might serve as blueprints for HIV-1 vaccine design. Here, we studied the immunogenicity of native-like recombinant envelope glycoprotein (Env) trimers based on viral sequences from elite neutralizers. While immunization with single trimers from elite neutralization did not recapitulate the breadth and potency of neutralization observed in these infected individuals, a combination of three subtype B Env trimers from elite neutralizers resulted in some neutralization breadth within subtype B viruses. These results should guide future efforts to design vaccines to induce broadly neutralizing antibodies.


Sign in / Sign up

Export Citation Format

Share Document