scholarly journals Evaluation of Return Period and Risk in Bivariate Non-Stationary Flood Frequency Analysis

Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 79 ◽  
Author(s):  
Ling Kang ◽  
Shangwen Jiang ◽  
Xiaoyong Hu ◽  
Changwen Li

The concept of a traditional return period has long been questioned in non-stationary studies, and the risk of failure was recommended to evaluate the design events in flood modeling. However, few studies have been done in terms of multivariate cases. To investigate the impact of non-stationarity on the streamflow series, the Yichang station in the Yangtze River was taken as a case study. A time varying copula model was constructed for bivariate modeling of flood peak and 7-day flood volume, and the non-stationary return period and risk of failure were applied to compare the results between stationary and non-stationary models. The results demonstrated that the streamflow series at the Yichang station showed significant non-stationary properties. The flood peak and volume series presented decreasing trends in their location parameters and the dependence structure between them also weakened over time. The conclusions of the bivariate non-stationary return period and risk of failure were different depending on the design flood event. In the event that both flood peak and volume are exceeding, the flood risk is smaller with the non-stationary model, which is a joint effect of the time varying marginal distribution and copula function. While in the event that either flood peak or volume exceed, the effect of non-stationary properties is almost negligible. As for the design values, the non-stationary model is characterized by a higher flood peak and lower flood volume. These conclusions may be helpful in long-term decision making in the Yangtze River basin under non-stationary conditions.

2019 ◽  
Vol 79 ◽  
pp. 03022
Author(s):  
Shangwen Jiang ◽  
Ling Kang

Under changing environment, the streamflow series in the Yangtze River have undergone great changes and it has raised widespread concerns. In this study, the annual maximum flow (AMF) series at the Yichang station were used for flood frequency analysis, in which a time varying model was constructed to account for non-stationarity. The generalized extreme value (GEV) distribution was adopted to fit the AMF series, and the Generalized Additive Models for Location, Scale and Shape (GAMLSS) framework was applied for parameter estimation. The non-stationary return period and risk of failure were calculated and compared for flood risk assessment between stationary and non-stationary models. The results demonstrated that the flow regime at the Yichang station has changed over time and a decreasing trend was detected in the AMF series. The design flood peak given a return period decreased in the non-stationary model, and the risk of failure is also smaller given a design life, which indicated a safer flood condition in the future compared with the stationary model. The conclusions in this study may contribute to long-term decision making in the Yangtze River basin under non-stationary conditions.


2006 ◽  
Vol 10 (2) ◽  
pp. 233-243 ◽  
Author(s):  
E. Gaume

Abstract. This paper presents some analytical results and numerical illustrations on the asymptotic properties of flood peak distributions obtained through derived flood frequency approaches. It confirms and extends the results of previous works: i.e. the shape of the flood peak distributions are asymptotically controlled by the rainfall statistical properties, given limited and reasonable assumptions concerning the rainfall-runoff process. This result is partial so far: the impact of the rainfall spatial heterogeneity has not been studied for instance. From a practical point of view, it provides a general framework for analysis of the outcomes of previous works based on derived flood frequency approaches and leads to some proposals for the estimation of very large return-period flood quantiles. This paper, focussed on asymptotic distribution properties, does not propose any new approach for the extrapolation of flood frequency distribution to estimate intermediate return period flood quantiles. Nevertheless, the large distance between frequent flood peak values and the asymptotic values as well as the simulations conducted in this paper help quantifying the ill condition of the problem of flood frequency distribution extrapolation: it illustrates how large the range of possibilities for the shapes of flood peak distributions is.


Author(s):  
Haisen Wang ◽  
Gangqiang Yang ◽  
Jiaying Qin

Based on the panel data of 106 cities in the Yangtze River Economic Belt of China from 2007 to 2016, this paper explores the impact of city centrality on the green innovation efficiency and proves the mediation effect of migrants by using spatial econometric model. The results show that there are more and more innovation contacts between cities, and the innovation network is becoming more and more dense. The core cities of the downstream innovation network are mainly Yangzhou, Zhenjiang, Wuxi, Changzhou, Suzhou and Hangzhou; the core cities in the midstream are mainly Wuhan, Changsha and Yichun; the core cities in the upstream are Chengdu and Bazhong. There is an inverted U-shaped relationship between city centrality and green innovation efficiency. In addition, the influence curve of city centrality on the green innovation efficiency of surrounding cities is also inverted U-shaped. Cities with high city centrality attract a large number of migrants that come from cities with lower centrality to improve the green innovation efficiency, but the green innovation efficiency of cities with low city centrality will decline due to lack of talents.


2020 ◽  
Vol 12 (24) ◽  
pp. 10448
Author(s):  
Qian Zhang ◽  
Joris Hoekstra

The 2014 hukou reform introduced by the Chinese central government was a turning point in China’s policies towards migration. Different from the previous hukou policies, which were largely exclusionary, the reformed policy encouraged migrants to permanently settle in their destination cities and make use of the public services available there. However, the actual results and consequences of this policy seem to vary between cities. This is due to the fact that Chinese municipal governments still have their own discretionary power when it comes to defining the criteria for accessing a local hukou. This raises the question of what the real impact of the hukou policy reform has been. This paper attempts to answer this question. It starts with a hukou access policy analysis of 20 different cities in the Yangtze River delta urban region. This analysis shows that the strictness of the local hukou access policy is related to city specific factors such as economic strength, share of migrant population, and population size. In the second part of the paper, we examine the impact of local hukou access policies on the intentions of migrants. Based on two logistic regression models, we find that the stricter the local hukou access policy is, the more willing migrants are to convert their current hukou into a local hukou. Furthermore, we observed that the settlement intention of migrants has a V-shaped rather than a linear relation with the strictness of local hukou access policies. Cities with relatively loose and cities with relatively strict hukou access policies are more desired as permanent settlement location than cities with moderately strict hukou access policies.


2019 ◽  
Vol 34 (3) ◽  
pp. 705-717
Author(s):  
Zhenkuan Su ◽  
Michelle Ho ◽  
Zhenchun Hao ◽  
Upmanu Lall ◽  
Xun Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document