scholarly journals Threshold Responses in the Taxonomic and Functional Structure of Fish Assemblages to Land Use and Water Quality: A Case Study from the Taizi River

Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 661 ◽  
Author(s):  
Yuan Zhang ◽  
Xiao-Ning Wang ◽  
Hai-Yu Ding ◽  
Yang Dai ◽  
Sen Ding ◽  
...  

Biological functional traits help to understand specific stressors that are ignored intaxonomic data analysis. A combination of biological functional traits and taxonomic data ishelpful in determining specific stressors which are of significance for fish conservation and riverbasin management. In the current study, the Taizi River was used as a case study to understand therelationships between the taxonomic and functional structure of fish and land use and waterquality, in addition to determining the thresholds of these stressors. The results showed thattaxonomic structure was significantly affected by the proportion of urban land and specificconductivity levels, while functional metrics were influenced by the proportions of farmland andforest. Threshold indicator taxa analysis found that Phoxinus lagowskii, Barbatula barbatula nuda,Odontobutis obscura, and Cobitis granoei had negative threshold responses along the gradients ofurban developments and specific conductivity. There was a significant change in fish taxonomiccomposition when the proportion of urban land exceeded a threshold of 2.6–3.1%, or specificconductivity exceeded a threshold of 369.5–484.5 μS/cm. Three functional features—habitatpreference, tolerance to disturbances, and spawning traits—showed threshold responses to theproportion of farmland and forest. The abundance of sensitive species should be monitored as partof watershed management, as sensitive species exhibit an earlier and stronger response to stressorsthan other functional metrics. Sensitive species had a positive threshold response to the proportionof forest at 80.1%. These species exhibited a negative threshold response to the proportion offarmland at 13.3%. The results of the current study suggest that the taxonomic and functionalstructure of fish assemblages are affected by land use and water quality. These parameters shouldbe integrated into routine monitoring for fish conservation and river basin management in the TaiziRiver. In addition, corresponding measures for improving river habitat and water quality shouldbe implemented according to the thresholds of these parameters.

AMBIO ◽  
2018 ◽  
Vol 48 (10) ◽  
pp. 1154-1168 ◽  
Author(s):  
Gunsmaa Batbayar ◽  
Martin Pfeiffer ◽  
Martin Kappas ◽  
Daniel Karthe

<em>Abstract.</em>—Ecologists recognize that surrounding land use can influence the structure and function of aquatic ecosystems, but few studies have explicitly examined the relative effects of different types of land use on stream ecosystems. We quantified the relationships between different land uses (forested, urban, agricultural with or without riparian buffers) and stream physicochemical variables and resident fish assemblages in 21 southwestern Michigan streams. These streams were located within a single basin (Kalamazoo River) and ecoregion to minimize differences in natural landscape conditions. Streams responded to a gradient of land use, with forested streams having the least degraded water quality, physical habitat, and fish assemblages, and agricultural streams lacking buffers being the most degraded. Urban and agricultural streams with buffers displayed characteristics intermediate to forested and agricultural streams lacking buffers. In general, habitat complexity and water quality declined across this land-use gradient from forested to agricultural streams, whereas fish density, richness, and dominance by tolerant species increased along the land-use gradient. Although urban streams had lower percentages of altered land use (i.e., <40% urban) in their catchments compared to agricultural streams (i.e., >50% agriculture), both land uses appeared to have similar detrimental effects on streams suggesting higher per unit area impacts of urbanization on streams. The presence of forested riparian buffers along agricultural streams increased the complexity of instream habitat, but resulted in few benefits to fish assemblages, suggesting that stream water quality in altered landscapes may be constraining fish assemblages more than physical habitat.


2020 ◽  
Author(s):  
Xingxing Han ◽  
Xiaoling Chen ◽  
Jialin Wang ◽  
Jianzhong Lu ◽  
Zhan Zhang
Keyword(s):  
Land Use ◽  

Sign in / Sign up

Export Citation Format

Share Document