scholarly journals Decadal-Scale Variations of Thalweg Morphology and Riffle–Pool Sequences in Response to Flow Regulation in the Lowermost Mississippi River

Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1175 ◽  
Author(s):  
Chia-Yu Wu ◽  
Joann Mossa

The lowermost Mississippi River (LMR) is one of the largest deltaic systems in North America and one of the heavily human-manipulated fluvial river systems. Historic hydrographic surveys from the mid-1900s to the early 2010s were used to document the thalweg morphology adjustments, as well as the riffle–pool sequences. Extensive aggradation was observed during 1950s to 1960s, as the Atchafalaya River was enlarging before the completion of the Old River Control Structure (ORCS). Following the completion of the ORCS, reductions in sediment input to the LMR resulted in net degradation of the thalweg profile patterns since the mid-1960s except for the 1992–2004 period. Different flood events that supplied sediment might be the cause of upstream aggradation from 1963–1975 and net aggradation along the entire reach from 1992–2004. Furthermore, the change pattern of thalweg profiles appear to be controlled by backwater effects, as well as the Bonnet Carré spillway opening. Results from riffle–pool sequences reveal that the averaging Ws ratios (length to channel width) are 6–7, similar to numerous previous studies. Temporal variations of the same riffles and pools reveal that aggradation and degradation might be heavily controlled by similar factors to the thalweg variations (i.e., sediment supply, backwater effects). In sum, this study examines decadal-scale geomorphic responses in a low-lying large river system subject to different human interventions, as well as natural flood events. Future management strategies of this and similar river systems should consider recent riverbed changes in dredging, sediment management, and river engineering.

2002 ◽  
Vol 114 (9) ◽  
pp. 1131-1142 ◽  
Author(s):  
Gregory S. Hancock ◽  
Robert S. Anderson

Abstract Many river systems in western North America retain a fluvial strath-terrace rec ord of discontinuous downcutting into bedrock through the Quaternary. Their importance lies in their use to interpret climatic events in the headwaters and to determine long-term incision rates. Terrace formation has been ascribed to changes in sediment supply and/or water discharge produced by late Quaternary climatic fluctuations. We use a one-dimensional channel- evolution model to explore whether temporal variations in sediment and water discharge can generate terrace sequences. The model includes sediment transport, vertical bedrock erosion limited by alluvial cover, and lateral valley-wall erosion. We set limits on our modeling by using data collected from the terraced Wind River basin. Two types of experiments were performed: constant- period sinusoidal input histories and variable-period inputs scaled by the marine δ18O rec ord. Our simulations indicate that strath-terrace formation requires input variability that produces a changing ratio of vertical to lateral erosion rates. Straths are cut when the channel floor is protected from erosion by sediment and are abandoned—and terraces formed—when incision can resume following sediment-cover thinning. High sediment supply promotes wide valley floors that are abandoned as sediment supply decreases. In contrast, wide valleys are promoted by low effective water discharge and are abandoned as discharge increases. Widening of the valley floors that become terraces occurs over many thousands of years. The transition from valley widening to downcutting and terrace creation occurs in response to subtle input changes affecting local divergence of sediment-transport capacity. Formation of terraces lags by several thousand years the input changes that cause their formation. Our results suggest that use of terrace ages to set limits on the timing of a specific event must be done with the knowledge that the system can take thousands of years to respond to a perturbation. The incision rate calculated in the field from the lowest terrace in these systems will likely be higher than the rate calculated by using older terraces, because the most recent fluvial response in the field is commonly downcutting associated with declining sediment input since the Last Glacial Maximum. This apparent increase in incision rates is observed in many river systems and should not necessarily be interpreted as a response to an increase in rock-uplift rate.


2021 ◽  
Author(s):  
Azra Khosravichenar ◽  
Morteza Fattahi ◽  
Hamideh Amini ◽  
Hans von Suchodoletz

<p>Fluvial sediments are valuable paleoenvironmental archives of the Quaternary. Since besides environmental factors they are also affected by local tectonics or intrinsic processes, large instead of small catchments should be studied. In drylands covering ca. 45% of the global terrestrial surface large river systems are generally missing, and most river systems are small rivers originating from mountain ranges. Their sediments are potentially interesting paleoenvironmental archives, but are often affected by intensive tectonics. During this study, to obtain a robust regional paleoenvironmental signal a small river system in the southwestern Binaloud Mountains in semi-arid NE Iran was exemplarily studied with a combined approach that encompassed both alluvial fan and catchment. By using geomorphological mapping and numerical dating, fluvial aggradation followed by incision was independently identified in larger areas or in different parts of the river system ca. 95–88 ka, 40 ka, 20 ka, around/after the Pleistocene/Holocene transition and possibly ca. 2.6 ka. These could be linked with regional and over-regional paleoenvironmental data. Furthermore, large boulders on the alluvial fan suggest anthropogenic destabilisation of the catchment during the last decades. Despite strong local tectonics the fluvial dynamics was mostly controlled by paleoenvironmental changes and human activity. This indicates that despite their small size, such river systems form valuable paleoenvironmental archives in drylands where other archive types are largely missing. </p>


Geosciences ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 448
Author(s):  
Azra Khosravichenar ◽  
Morteza Fattahi ◽  
Hamideh Amini ◽  
Hans von Suchodoletz

Fluvial sediments are valuable paleoenvironmental archives of the Quaternary. Since besides environmental factors they are also affected by local tectonics or intrinsic processes, large instead of small catchments should be studied. In drylands covering ca. 45% of the global terrestrial surface large river systems are generally missing, and most river systems are small rivers originating from mountain ranges. Their sediments are potentially interesting paleoenvironmental archives, but are often affected by intensive tectonics. During this study, to obtain a robust regional paleoenvironmental signal a small river system in the southwestern Binaloud Mountains in semi-arid NE Iran was exemplarily studied with a combined approach that encompassed both alluvial fan and catchment. By using geomorphological mapping and numerical dating, fluvial aggradation followed by incision was independently identified in larger areas or in different parts of the river system ca. 95–88 ka, 40 ka, 20 ka, around/after the Pleistocene/Holocene transition and possibly ca. 2.6 ka. These could be linked with regional and over-regional paleoenvironmental data. Furthermore, large boulders on the alluvial fan suggest anthropogenic destabilisation of the catchment during the last decades. Despite strong local tectonics the fluvial dynamics was mostly controlled by paleoenvironmental changes and human activity. This indicates that despite their small size, such river systems form valuable paleoenvironmental archives in drylands where other archive types are largely missing.


Author(s):  
Carl Legleiter ◽  
Brandon Overstreet

The Snake River is a prominent, central feature of Grand Teton National Park, and this dynamic fluvial system maintains diverse habitats while actively shaping the landscape. Although the riparian corridor is relatively pristine, the Snake River is by no means free from anthropogenic influences: streamflows have been regulated since 1907 by Jackson Lake Dam. Among dam-controlled rivers in the western U.S., the Snake River is unique in that tributaries entering below the dam supply sufficient coarse bed material to produce a braided morphology. As a result of tributary inputs, sediment flux along the Snake River has been relatively unaffected by Jackson Lake Dam, but flow regulation has reduced the magnitude and altered the timing of streamflows. In this study we are coupling an annual image time series with extensive field surveys to document channel changes occurring on the Snake River. Our objective is to quantify how snowmelt runoff events and flow management strategies influence patterns of sediment transfer and storage throughout the river system, with a particular focus on tributary junctions. More specifically, we are using the image sequence to identify areas of erosion and deposition and hence infer the sediment flux associated with the observed changes in channel morphology. This analysis will improve our understanding of the river’s response to flow management and enable us to generate hypotheses as to how the system might adapt to future anthropogenic and/or climate-driven alterations in streamflow and sediment supply. In addition, our research on the Snake River involves an ongoing assessment of the potential to measure the morphology and dynamics of large, complex rivers via remote sensing. A new aspect of this investigation involves estimating flow velocities from hyperspectral images that capture the texture of the water surface. Extensive field measurements of velocity and water surface roughness are being used to develop this innovative approach and thus increase the amount of river information that can be inferred via remote sensing.


Hydrology ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 87
Author(s):  
Anouk Bomers

Early flood forecasting systems can mitigate flood damage during extreme events. Typically, the effects of flood events in terms of inundation depths and extents are computed using detailed hydraulic models. However, a major drawback of these models is the computational time, which is generally in the order of hours to days for large river basins. Gaining insight in the outflow hydrographs in case of dike breaches is especially important to estimate inundation extents. In this study, NARX neural networks that were capable of predicting outflow hydrographs of multiple dike breaches accurately were developed. The timing of the dike failures and the cumulative outflow volumes were accurately predicted. These findings show that neural networks—specifically, NARX networks that are capable of predicting flood time series—have the potential to be used within a flood early warning system in the future.


2009 ◽  
Vol 9 (4) ◽  
pp. 1349-1363 ◽  
Author(s):  
D. Nijssen ◽  
A. Schumann ◽  
M. Pahlow ◽  
B. Klein

Abstract. As a result of the severe floods in Europe at the turn of the millennium, the ongoing shift from safety oriented flood control towards flood risk management was accelerated. With regard to technical flood control measures it became evident that the effectiveness of flood control measures depends on many different factors, which cannot be considered with single events used as design floods for planning. The multivariate characteristics of the hydrological loads have to be considered to evaluate complex flood control measures. The effectiveness of spatially distributed flood control systems differs for varying flood events. Event-based characteristics such as the spatial distribution of precipitation, the shape and volume of the resulting flood waves or the interactions of flood waves with the technical elements, e.g. reservoirs and flood polders, result in varying efficiency of these systems. Considering these aspects a flood control system should be evaluated with a broad range of hydrological loads to get a realistic assessment of its performance under different conditions. The consideration of this variety in flood control planning design was one particular aim of this study. Hydrological loads were described by multiple criteria. A statistical characterization of these criteria is difficult, since the data base is often not sufficient to analyze the variety of possible events. Hydrological simulations were used to solve this problem. Here a deterministic-stochastic flood generator was developed and applied to produce a large quantity of flood events which can be used as scenarios of possible hydrological loads. However, these simulations imply many uncertainties. The results will be biased by the basic assumptions of the modeling tools. In flood control planning probabilities are applied to characterize uncertainties. The probabilities of the simulated flood scenarios differ from probabilities which would be derived from long time series. With regard to these known unknowns the bias of the simulations was considered by imprecise probabilities. Probabilities, derived from measured flood data were combined with probabilities which were estimated from long simulated series. To consider imprecise probabilities, fuzzy sets were used to distinguish the results between more or less possible design floods. The need for such a differentiated view on the performance of flood protection systems is demonstrated by a case study.


2014 ◽  
Vol 31 (3) ◽  
pp. 335-349 ◽  
Author(s):  
C. Soulsby ◽  
C. Birkel ◽  
J. Geris ◽  
D. Tetzlaff

Sign in / Sign up

Export Citation Format

Share Document