scholarly journals Improving the Performance of Water Distribution Networks Based on the Value Index in the System Dynamics Framework

Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2445
Author(s):  
Mohsen Hajibabaei ◽  
Sara Nazif ◽  
Robert Sitzenfrei

This study proposes an algorithm for the improvement of water distribution networks (WDNs) performance using system dynamics. In the first part, the hydraulic and environmental performance of WDNs is investigated. The hydraulic performance is assessed based on the pressure of nodes and the flow velocity in pipes. Furthermore, using life cycle assessment, an environmental performance index is proposed to examine the environmental impacts of WDNs. Moreover, in order to evaluate the overall performance in regards to the costs, a value index in the system dynamics framework is proposed. Then, based on the developed framework, improvement strategies for a WDN are assessed by applying scenarios according to constraints and requirements of the network. The considered scenarios are as follows: (1) reducing per capita water demand of the WDN; (2) decreasing the average pressure in the WDN; (3) reducing the mean age of the system by its renewing; and (4) a combination of reducing the per capita water demand and average pressure in the WDN. The results indicate that the best solutions for increasing the value index in this network are: (a) to reduce the pressure of the pressure reducing valves (PRV) from 30 to 28 m; (b) to reduce the per capita water demand by the annual rate of 0.5% and 1% and decreasing the pressure of the PRV valves together. Therefore, it is shown how the developed algorithm is a purposeful approach for evaluating and improving the performance of WDNs based on the value index.

Author(s):  
Hamideh Fallahi ◽  
Mohammadreza Jalili Ghazizadeh ◽  
Babak Aminnejad ◽  
Jafar Yazdi

Abstract Water leakage control in water distribution networks (WDNs) is one of the main challenges of water utilities. The present study proposes a new method to locate a leakage in WDNs using feedforward artificial neural networks (ANNs). For this purpose, two ANNs training cases are considered. For case1, the ANNs are trained by average daily water demand, including small to large hypothetical leakages. In case 2, the ANNs are trained by hourly water demand and variable hourly nodal leakages over 24 hours. The training parameters are determined by EPANET2.0 hydraulic simulation software using MATLAB programming language. In both cases, first, ANNs are trained using flow rates of total pipes number. Then, sensitivity analysis is performed by hybrid ANNs for the flow rates of pipes number less than the number of the total pipes. The results of proposed hybrid ANNs indicate that if at least the flow rates of 10% of the total pipes are known (using flowmeters), then the leakage locations in both cases can be determined. Despite the complexity of case 2, because of the variations of demand and leakage over the 24-hour, the proposed method could detect the leakage location with high accuracy.


2016 ◽  
Vol 17 (3) ◽  
pp. 811-824 ◽  
Author(s):  
Amin Abo-Monasar ◽  
Muhammad Al-Zahrani

Delivering water in sufficient quantity and acceptable quality is the main objective of water distribution networks (WDN) and at the same time is the main challenge. Many factors affect the delivery of water through distribution networks. Some of these factors are relevant to water quality, quantity and the condition of the infrastructure itself. The deterioration of water quality in the WDN leads to failure at the water quality level, which can be critical because it is closest to the point of delivery and there are virtually no safety barriers before consumption. Accordingly, developing a powerful monitoring system that takes into consideration water demand distribution, the vulnerability of the distribution system and the sensitivity of the population to the deterioration of water quality can be very beneficial and, more importantly, could save lives if there was any deterioration of water quality due to operational failure or cross-contamination events. In this paper, a framework for a water quality monitoring system that considers water demand distribution, the vulnerability of the system and the sensitivity of the population using fuzzy synthetic evaluation and optimization algorithms is developed. The proposed approach has been applied to develop a monitoring system for a real WDN in Saudi Arabia.


2021 ◽  
Author(s):  
Robert Sitzenfrei ◽  
Lukas Schartner ◽  
Martin Oberascher

<p>The transition from fossil fuel to renewable energies represents the central challenge of the early 21st century. In this context, small hydro power systems (SHPS) can be implemented in water distribution networks (WDNs) to use pressure and drinking water surplus for hydropower production. However, inflow to SHPS is normally controlled based on the available water volume after ensuring a reliable drinking water supply and considering a fire-fighting reserve. Hence, the hydropower generation in WDNs has to be in accordance with its primary tasks. The challenge now is to optimally use the available pressure and water surplus for hydropower production while at the same time reliably fulfilling drinking water constraints.</p><p>In this work, future predictions of daily water demand are added into the control strategy of SHPS to optimize the operation. The control procedure of a SHPS is optimized by means of an evolutionary algorithm in combination with Monte-Carlo sampling. This is done for different categorized water demand and water source data in order to maximize profit while ensuring the WDNs reliable operation. Further, water demand forecasts of varying quality are evaluated in combination with previously optimized and categorized SHPS control-sets. For case study, a real WDN of an Alpine municipality is hypothetically retrofitted with a controllable SHPS. Different types of SHPS and turbine characterises are investigated using amount of hydropower production, more specifically profitability, as performance indicator.</p><p>While in literature, optimization is usually performed based on representative days (e.g., average day demand), long-term simulations over 10 years are used in this work. Therefore, a sufficient supply pressure in all water demand nodes in the WDN is ensured during this period. This results in a significant lower but more realistic estimation of potential benefits. The results also show, that after optimizing the SHPS location and device size, an additional potential increase of yearly profit of 1.1% can be achieved in the long-term operation of a Pelton turbine by considering water demand forecasts.</p>


2018 ◽  
Vol 101 ◽  
pp. 128-136 ◽  
Author(s):  
A. Di Nardo ◽  
M. Di Natale ◽  
R. Gargano ◽  
C. Giudicianni ◽  
R. Greco ◽  
...  

Author(s):  
James Northwood

The Intergovernmental Panel on Climate Change (IPCC) has forecast higher mean air temperatures for the mid-latitude region of North America. Studies have shown a strong positive correlation between temperature and municipal water demand. Warmer air temperatures in the future have the potential to increase municipal water demand above levels forecast without climate change considerations. The predicted increase in mean temperature and the onset of hotter and dryer summer weather may create challenges for water providers in the future. Without appropriate network upgrades, higher water demands may degrade the hydraulic performance of existing systems. This creates a need to characterize the impact of higher temperatures on peak water demands and on the hydraulic performance in water distribution networks. The aim of the research is to begin to understand the impact of higher temperatures on nodal demands and pressures in water distribution networks. The sensitivity of municipal water demand to an increase in air temperature is established through previous climate adaptation research completed for the geographical region of central Canada. Results indicate that without adaptation, a 2-4 °C temperature increase causes mean pressure head to fall below the acceptable minimum and produces large uncertainties in pressure head under maximum hour demand (MHD) and maximum day demand (MDD) + fire design conditions in the Anytown network. The combination of low mean pressure head and a high coefficient of variation of pressure head increases the probability of hydraulic failure in the Anytown network. Adaptation strategies are presented as ways to hedge the effects of a warming climate in the Anytown network


Sign in / Sign up

Export Citation Format

Share Document