scholarly journals Catchment-Scale Integrated Surface Water-Groundwater Hydrologic Modelling Using Conceptual and Physically Based Models: A Model Comparison Study

Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 363 ◽  
Author(s):  
Mohammad Bizhanimanzar ◽  
Robert Leconte ◽  
Mathieu Nuth

This paper presents a comparative analysis of the use of an externally linked (MOBIDIC-MODFLOW) and a physically based (MIKE SHE) surface water-groundwater model to capture the integrated hydrologic responses of the Thomas Brook catchment, in Canada. The main objective of the study is to investigate the effect of simplification in representation of the hydrological processes in MOBIDIC-MODFLOW on its simulation accuracy. To this aim, MOBIDIC and MODFLOW were coupled in order to sequentially exchange the groundwater recharge and baseflow discharges within each computation time step. Using identical sets of hydrogeological properties for the two models, the coefficients of the gravity and capillary reservoirs in MOBIDIC were calibrated so as to closely predict the hydrological budget of the catchment simulated with MIKE SHE. The simulated results show that the two models can closely replicate the observed water table responses at two monitoring wells. However, in very shallow water table locations, the instantaneous response of the water table was not precisely captured in MOBIDIC-MODFLOW. Additionally, the simplified conceptualization of the unsaturated flow in MOBIDIC-MODFLOW resulted in overestimated groundwater recharge during spring and underestimation during summer. Moreover, the computational efficiency of MOBIDIC-MODFLOW, as compared to MIKE SHE, along with less required input data, confirms its potential for regional scale groundwater-surface water interaction modelling applications.

2019 ◽  
Vol 23 (5) ◽  
pp. 2245-2260 ◽  
Author(s):  
Mohammad Bizhanimanzar ◽  
Robert Leconte ◽  
Mathieu Nuth

Abstract. We present a new conceptual scheme of the interaction between unsaturated and saturated zones of the MOBIDIC (MOdello Bilancio Idrologico DIstributo e Continuo) hydrological model which is applicable to shallow water table conditions. First, MODFLOW was coupled to MOBIDIC as the physically based alternative to the conceptual groundwater component of the MOBIDIC–MODFLOW. Then, assuming a hydrostatic equilibrium moisture profile in the unsaturated zone, a dynamic specific yield that is dependent on the water table level was added to MOBIDIC–MODFLOW, and calculation of the groundwater recharge in MOBIDIC was revisited using a power-type equation based on the infiltration rate, soil moisture deficit, and a calibration parameter linked to the initial water table depth, soil type, and rainfall intensity. Using the water table fluctuation (WTF) method for a homogeneous soil column, the parameter of the proposed groundwater recharge equation was determined for four soil types, i.e. sand, loamy sand, sandy loam, and loam under a pulse of rain with different intensities. The fidelity of the introduced modifications in MOBIDIC–MODFLOW was assessed by comparison of the simulated water tables against those of MIKE SHE, a physically based integrated hydrological modelling system simulating surface and groundwater flow, in two numerical experiments: a two-dimensional case of a hypothetical watershed in a vertical plane (constant slope) under a 1 cm d−1 uniform rainfall rate and a quasi-real three-dimensional watershed under 1 month of a measured daily rainfall hyetograph. The comparative analysis confirmed that the simplified approach can mimic simple and complex groundwater systems with an acceptable level of accuracy. In addition, the computational efficiency of the proposed approach (MIKE SHE took 180 times longer to solve the three-dimensional case than the MOBIDIC–MODFLOW framework) demonstrates its applicability to real catchment case studies.


2018 ◽  
Author(s):  
Mohammad Bizhanimanzar ◽  
Robert Leconte ◽  
Mathieu Nuth

Abstract. We present a new conceptual scheme of the interaction between unsaturated and saturated zones of the MOBIDIC (Modello Bilancio Idrologico DIstributo e Continuo) hydrological model which is applicable to shallow water table conditions. First, a hydrostatic equilibrium moisture profile was assumed for simulating changes in water table levels. This resulted in a water table based expression of specific yield, which was included in the coupled MOBIDIC-MODFLOW modelling framework for capturing shallow water tables fluctuations. Second, the groundwater recharge was defined using a power type equation based on infiltration rate, soil moisture deficit and a calibration parameter linked to initial water table level, soil type and rainfall intensity. Using the Water Table Fluctuation (WTF) method, the water table rise for a homogeneous soil column under a pulse of rain with different intensities (up to 30 mm/day) the parameter of the proposed groundwater recharge equation was determined for four soil types i.e., sand, loamy sand, sandy loam and loam. The simulated water table levels were compared against those simulated by MIKE-SHE, a physically based integrated hydrological modelling system simulating surface and groundwater flow. Two numerical experiments were carried out: a two-dimensional case of a hypothetical watershed in a vertical plane (constant slope) under a 1 cm/day uniform rainfall rate, and a quasi-real three dimensional watershed under one month of measured daily rainfall hyetograph. The comparative analysis confirmed that the simplified approach can mimic simple and complex groundwater systems with an acceptable level of accuracy. In addition, the computational efficiency of the proposed approach (MIKE-SHE took 180 times longer to solve the 3D case than the MOBIDIC-MODFLOW framework) demonstrates its applicability to real catchment case studies.


2020 ◽  
Author(s):  
Tamara Kolbe ◽  
Jean Marçais ◽  
Jean-Raynald de Dreuzy ◽  
Thierry Labasque ◽  
Kevin Bishop

<p>The distribution of groundwater ages with depth provides information about subsurface structures and flow dynamics. Upslope measured groundwater age stratifications are commonly used to estimate groundwater recharge rates, whereas downslope measured age stratifications are influenced by recharge conditions, the aquifer structure and interactions between groundwater and surface water. In our study we address the question whether downslope measured groundwater ages from different locations can provide spatial and temporal information about catchment-scale groundwater dynamics and the relationship between groundwater recharge and discharge.<br>We derived an overall groundwater age stratification, representative for the Svartberget subcatchment (0.47 km<sup>2</sup>) located within the Krycklan study site, by measuring CFCs from 9 different sampling locations with depths of 2 m to 18 m. All sampling locations were downslope and located in basal till which is overlain by ablation till. <br>The CFC-based groundwater age stratification reveals an unexpected pattern, with groundwater ages of already 30 years immediately below the water table. Groundwater ages increase then with depth. We could reproduce the observed groundwater age stratification by using a groundwater flow model and show that the lag of rejuvenation, noticeable in groundwater ages of 30 years at the water table, derives from return flow of groundwater at a subsurface discharge zone that evolves at the interface between the two soil types (basal and ablation till). Furthermore, we demonstrate by varying the infiltration rate how the extent of the discharge zone and the partitioning of the infiltration amount to the two layers change, i.e. young runoff in the upper layer (ablation till) and old groundwater circulation through the deeper layer (basal till).<br>By providing a simple analytical approximations of the observed groundwater age stratification, we show that the extent of the subsurface discharge zone is a powerful indicator of the relation between the recharge and discharge zone, while the vertical gradient of the age-depth relationship provides information about the overall aquifer recharge.</p>


2013 ◽  
Vol 17 (12) ◽  
pp. 4907-4924 ◽  
Author(s):  
M. C. L. Yu ◽  
I. Cartwright ◽  
J. L. Braden ◽  
S. T. de Bree

Abstract. Radon (222Rn) and major ion geochemistry were used to define and quantify the catchment-scale groundwater-surface water interactions along the Ovens River in the southeast Murray–Darling Basin, Victoria, Australia, between September 2009 and October 2011. The Ovens River is characterized by the transition from a single channel within a mountain valley in the upper catchment to a multi-channel meandering river on flat alluvial plains in the lower catchment. Overall, the Ovens River is dominated by gaining reaches, receiving groundwater from both alluvial and basement aquifers. The distribution of gaining and losing reaches is governed by catchment morphology and lithology. In the upper catchment, rapid groundwater recharge through the permeable aquifers increases the water table. The rising water table, referred to as hydraulic loading, increases the hydraulic head gradient toward the river and hence causes high baseflow to the river during wet (high flow) periods. In the lower catchment, lower rainfall and finer-gained sediments reduce the magnitude and variability of hydraulic gradient between the aquifer and the river, producing lower but more constant groundwater inflows. The water table in the lower reaches has a shallow gradient, and small changes in river height or groundwater level can result in fluctuating gaining and losing behaviour. The middle catchment represents a transition in river-aquifer interactions from the upper to the lower catchment. High baseflow in some parts of the middle and lower catchments is caused by groundwater flowing over basement highs. Mass balance calculations based on 222Rn activities indicate that groundwater inflows are 2 to 17% of total flow with higher inflows occurring during high flow periods. In comparison to 222Rn activities, estimates of groundwater inflows from Cl concentrations are higher by up to 2000% in the upper and middle catchment but lower by 50 to 100% in the lower catchment. The high baseflow estimates using Cl concentrations may be due to the lack of sufficient difference between groundwater and surface water Cl concentrations. Both hydrograph separation and differential flow gauging yield far higher baseflow fluxes than 222Rn activities and Cl concentrations, probably indicating the input of other sources to the river in additional to regional groundwater, such as bank return flows.


2020 ◽  
Author(s):  
Srikrishnan Siva Subramanian ◽  
Xuanmei Fan ◽  
Ali. P. Yunus ◽  
Theo van Asch ◽  
Qiang Xu ◽  
...  

<p>Seasonal snow cover occupies around 33 % of the earth’s surface and draws the underlying landscape to serious natural hazards under climate change. The frequency of shallow landslides in seasonal cold regions is increasing, i.e., in the French Alps, Umbria in Italy, and Hokkaido in Japan. Further, tectonically active seasonally cold areas are more susceptible to spring landslides if an earthquake occurs during pre-winter. Hazard assessment and risk mitigation of snowmelt-induced landslides in such a scenario requires physically-based prediction models. However, studies focusing on the impacts of future snowmelt on shallow landslides are scarce. To comprehend these, the complex interactions between the atmosphere, hydrological, and geomechanical systems within a catchment under future climate need detailed studies. Present methods for snowmelt induced soil slope instability analysis are single-slope based and applied for individual cases. The challenge remain is to simulate the interactions between the atmosphere, hydrological, and geomechanical systems by coupling micro and macro-scale processes within a catchment for regional-scale future forecasts. In this perspective, we developed a novel spatially distributed, a physically-based numerical approach to compute slope stability within a basin, explicitly considering the atmosphere-ground, hydrology, and mechanical interactions on a day to day time step. Using this model, we envisaged future snowmelt-induced landslides under increased and decreased melt rates and post-earthquake settings. We obtained the probability density curves of these future landslides and found that under slower snowmelt rates, the occurrence probability of individual landslides remains the same, whereas, under rapid and increased snowmelt rates, the size-distribution of the landslides increase one magnitude and doubles if rapid snowmelt follows an earthquake.</p>


2019 ◽  
Vol 11 (10) ◽  
pp. 2955 ◽  
Author(s):  
Adriana da Costa ◽  
Hugo de Salis ◽  
João Viana ◽  
Fernando Leal Pacheco

The zoning of groundwater recharge potential would be attractive for water managers, but is lacking in many regions around the planet, including in the Jequitiba River basin, Minas Gerais, Brazil. In this study, a physically based spatially distributed method to evaluate groundwater recharge potential at catchment scale was developed and tested in the aforementioned Jequitiba River basin. The data for the test was compiled from institutional sources and implemented in a Geographic Information System. It comprised meteorological, hydrometric, relief, land use, and soil data. The average results resembled the annual recharge calculated by a hydrograph method, which worked as validation method. The spatial variation of recharge highlighted the predominant contribution of flat areas, porous aquifers, and forested regions to groundwater recharge. They also exposed the negative effect of urbanization. In combination, these factors elected the following sectors of the Jequitiba River basin as regions of high recharge potential: the south-southeast part of the headwaters in Prudente de Morais; Sete Lagoas towards the central part of the basin; and the region between Funilândia and Jequitiba, near the Jequitiba river mouth. Some management practices were suggested to improve groundwater recharge. The map of groundwater recharge potential produced in this study is valuable and is therefore proposed as tool for planners in the sustainable use of groundwater and protection of recharge areas.


2000 ◽  
Vol 4 (1) ◽  
pp. 47-63 ◽  
Author(s):  
L. Feyen ◽  
R. Vázquez ◽  
K. Christiaens ◽  
O. Sels ◽  
J. Feyen

Abstract. Physically based distributed models are rarely calibrated and validated thoroughly because of lack of data. In practice, validation is limited to comparison of simulated and predicted discharges in a catchment, or of simulated and observed piezometric levels in some calibrated wells. Rarely, internal noncalibrated wells or discharge stations are included in model evaluation. In this study, the fully distributed physically based MIKE SHE model was applied to the 600-km2 catchment of the Grote and the Kleine Gete, Belgium. Firstly, the MIKE SHE model was calibrated against both daily discharge measurements and observed water levels and then validated using a simple split-sample test. The observed discharges were simulated successfully in both the calibration and the validation period, while results for the piezometric levels differed considerably among the wells. In addition, a multi-site validation test for 2 internal discharge stations and 6 observation wells showed inferior results for the discharge stations and comparable results for the water table wells. As in the calibration and the split-sample test validation, water table fluctuations were predicted well in some wells, but with little agreement in others. This may be due to scale effects and to the poor quality of the data in certain areas of the catchment. Mainly, the lack of data made it difficult to simulate time series of internal catchment variables with acceptable accuracy so that even the calibrated and validated model could not provide reliable predictions of the water table over the entire catchment. Keywords: integral hydrological modelling; distributed code; MIKE-SHE; model performance; model calibration; model validation


Sign in / Sign up

Export Citation Format

Share Document