scholarly journals Streamflow Variability in Colombian Pacific Basins and Their Teleconnections with Climate Indices

Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 526 ◽  
Author(s):  
Teresita Canchala ◽  
Wilmar Loaiza Cerón ◽  
Félix Francés ◽  
Yesid Carvajal-Escobar ◽  
Rita Andreoli ◽  
...  

Oceanic-atmospheric phenomena of different time scales concurrently might affect the streamflow in several basins around the world. The Atrato River Basin (ARB) and Patía River Basin (PRB) of the Colombian Pacific region are examples of such basins. Nevertheless, the relations between the streamflows in the ARB and PRB and the oceanic-atmospheric factors have not been examined considering different temporal scales. Hence, this article studies the relations of the climate indices and the variability of the streamflows in the ARB and PRB at interannual and decadal timescales. To this, the streamflow variability modes were obtained from the principal component analysis (PCA); furthermore, their linear dependence with indices of the El Niño/Southern Oscillation (ENSO), precipitation (PRP), the Choco low-level jet (CJ), and other indices were quantified through (a) Pearson and Kendall’s tau correlations, and (b) wavelet transform. The PCA presented a single significant mode for each basin, with an explained variance of around 80%. The correlation analyses between the PC1s of the ARB and PRB, and the climate indices showed significant positive (negative) high correlations with PRP, CJ, and Southern Oscillation Index (SOI) (ENSO indices). The wavelet coherence analysis showed significant coherencies between ENSO and ARB: at interannual (2–7 years) and decadal scale (8–14), preferably with the sea surface temperature (SST) in the east and west Tropical Pacific Ocean (TPO). For PRB with the SST in the central and western regions of the TPO in the interannual (4–8 years) and decadal (8–14 years) scales, the decreases (increases) in streamflow precede the El Niño (La Niña) events. These results indicate multiscale relations between the basins’ streamflow and climate phenomena not documented in previous works, relevant to forecast the extreme flow events in the Colombian Pacific rivers and for planning and implementing strategies for the sustainable use of water resources in the basins studied.

Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1863 ◽  
Author(s):  
Teresita Canchala ◽  
Wilfredo Alfonso-Morales ◽  
Wilmar Loaiza Cerón ◽  
Yesid Carvajal-Escobar ◽  
Eduardo Caicedo-Bravo

Given that the analysis of past monthly rainfall variability is highly relevant for the adequate management of water resources, the relationship between the climate-oceanographic indices, and the variability of monthly rainfall in Southwestern Colombia at different time scales was chosen as the research topic. It should also be noted that little-to-no research has been carried out on this topic before. For the purpose of conducting this research, we identified homogeneous rainfall regions while using Non-Linear Principal Component Analysis (NLPCA) and Self-Organizing Maps (SOM). The rainfall variability modes were obtained from the NLPCA, while their teleconnection in relation to the climate indices was obtained from Pearson’s Correlations and Wavelet Transform. The regionalization process clarified that Nariño has two regions: the Andean Region (AR) and the Pacific Region (PR). The NLPCA showed two modes for the AR, and one for the PR, with an explained variance of 75% and 48%, respectively. The correlation analyses between the first nonlinear components of AR and PR regarding climate indices showed AR high significant positive correlations with Southern Oscillation Index (SOI) index and negative correlations with El Niño/Southern Oscillation (ENSO) indices. PR showed positive ones with Niño1 + 2, and Niño3, and negative correlations with Niño3.4 and Niño4, although their synchronous relationships were not statistically significant. The Wavelet Coherence analysis showed that the variability of the AR rainfall was influenced principally by the Niño3.4 index on the 3–7-year inter-annual scale, while PR rainfall were influenced by the Niño3 index on the 1.5–3-year inter-annual scale. The El Niño (EN) events lead to a decrease and increase in the monthly rainfall on AR and PR, respectively, while, in the La Niña (LN) events, the opposite occurred. These results that are not documented in previous studies are useful for the forecasting of monthly rainfall and the planning of water resources in the area of study.


2020 ◽  
Vol 4 (4) ◽  
pp. 699-711
Author(s):  
Justin A. Le ◽  
Hesham M. El-Askary ◽  
Mohamed Allali ◽  
Eman Sayed ◽  
Hani Sweliem ◽  
...  

AbstractUsing new mathematical and data-driven techniques, we propose new indices to measure and predict the strength of different El Niño events and how they affect regions like the Nile River Basin (NRB). Empirical Mode Decomposition (EMD), when applied to Southern Oscillation Index (SOI), yields three Intrinsic Mode Functions (IMF) tracking recognizable and physically significant non-stationary processes. The aim is to characterize underlying signals driving ENSO as reflected in SOI, and show that those signals also meaningfully affect other physical processes with scientific and predictive utility. In the end, signals are identified which have a strong statistical relationship with various physical factors driving ENSO variation. IMF 6 is argued to track El Niño and La Niña events occurrence, while IMFs 7 and 8 represent another signal, which reflects on variations in El Niño strength and variability between events. These we represent an underlying inter-annual variation between different El Niño events. Due to the importance of the latter, IMFs 7 and 8, are defined as Interannual ENSO Variability Indices (IEVI) and referred to as IEVI α and IEVI β. EMD when applied to the NRB precipitation, affecting the Blue Nile yield, identifying the IEVI-driven IMFs, with high correlations of up to ρ = 0.864, suggesting a decadal variability within NRB that is principally driven by interannual decadal-scale variability highlighting known geographical relationships. Significant hydrological processes, driving the Blue Nile yield, are accurately identified using the IEVI as a predictor. The IEVI-based model performed significantly at p = 0.038 with Blue Nile yield observations.


Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 256 ◽  
Author(s):  
Fuqiang Cao ◽  
Tao Gao ◽  
Li Dan ◽  
Lian Xie ◽  
Xiang Gong

Based on tropical cyclone (TC) track data and gridded observational rainfall data of CN05.1 during the period of 1961 to 2014, we examine the contribution of TCs on three metrics of summertime rainfall regimes and identify the connection between TC-induced precipitation events and El Niño–Southern Oscillation (ENSO) in middle–lower reaches of Yangtze River Basin (MLYRB). At the regional scale, TCs are responsible for approximately 14.4%, 12.5%, and 6.9% of rainfall events for normal, 75th, and 95th percentile precipitation cases, respectively. There is no evidence of significant long-term trends of the three type events linked with TCs, while their interdecadal variability is remarkable. Fractionally, larger proportions of TC-induced events occur along southeast coastal regions of MLYRB for normal rainfall events, and they are recorded over southwest and central-east MLYRB for 95th percentile cases. Moreover, a larger contribution of 95th percentile precipitation events to summer total rainfall is found than that for 75th percentile cases, suggesting that TCs may exert stronger impacts on the upper tail of summertime precipitation distribution across MLYRB. The TC-induced normal rainfall events tend to occur more frequency over central-west MLYRB during negative phase of ENSO in summer. However, the higher likelihood of TC-induced rainfall for three defined metrics are found over the majority of areas over MLYRB during negative ENSO phase in spring. In preceding winter, La Niña episode plays a crucial role in controlling the frequency of both normal and 75th percentile precipitation events.


2005 ◽  
Vol 18 (22) ◽  
pp. 4840-4861 ◽  
Author(s):  
Tracy E. Twine ◽  
Christopher J. Kucharik ◽  
Jonathan A. Foley

Abstract Climatic and hydrologic observations and results from a terrestrial ecosystem model coupled to a regional-scale river-routing algorithm are used to document the associations between the El Niño–Southern Oscillation (ENSO) phenomenon and anomalies in climate, surface water balance, and river hydrology within the Mississippi River basin. While no ENSO signal is found in streamflow at the outlet of the basin in Vicksburg, Mississippi, significant anomalies in all water balance components are found in certain regions within the basin. ENSO is mainly associated with positive winter temperature anomalies, but hydrologic patterns vary with season, location, and ENSO phase. El Niño precipitation anomalies tend to affect evapotranspiration (ET) in the western half of the basin and runoff in the eastern half. La Niña events are associated with ET anomalies in the central portion of the basin and runoff anomalies in the southern and eastern portions of the basin. Both ENSO phases are associated with decreased snow depth. Anomalous soil moisture patterns occur at seasonal time scales and filter noisier spatial patterns of precipitation anomalies into coherent patterns with larger field significance; however, for all water budget components, there is a large amount of variability in response within a particular ENSO phase. With anomalies that are up to 4 times those of a typical event, it is clear that improved predictability of the onset and strength of an upcoming ENSO event is important for both water resource management and disaster mitigation.


Sign in / Sign up

Export Citation Format

Share Document