scholarly journals Spatial and Temporal Patterns of δ13C and δ15N of Suspended Particulate Organic Matter in Maryland Coastal Bays, USA

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2345 ◽  
Author(s):  
Blessing O. Edje ◽  
Ali B. Ishaque ◽  
Paulinus Chigbu

The suspended particulate organic matter (SPOM) in transitional waters such as the Maryland Coastal Bays (MCBs) is derived from allochthonous and autochthonous sources. Little is known, however, about the contribution of terrestrially derived organic matter to SPOM in the MCBs. The sources of SPOM in the MCBs were evaluated using stable isotope ratios of nitrogen (δ15N) and carbon (δ13C), and C/N molar ratios. The values of SPOM δ15N, δ13C and C/N ratios from samples collected seasonally (July 2014 to October 2017) at 13 sites ranged from −0.58 to 10.51‰, −26.85 to −20.33‰, and 1.67 to 11.36, respectively, indicating a mixture of terrestrial SPOM transported by tributaries, marine organic matter from phytoplankton, and sewage. SPOM δ13C levels less than −24‰, suggesting the dominance of terrestrially derived carbon, occurred mainly at sites close to the mouths of tributaries, and were less depleted at sites near the ocean. The mean value of SPOM δ13C was higher in October 2014 (−22.76‰) than in October 2015 (−24.65‰) and 2016 (−24.57‰) likely due to differences in river discharge. Much lower values (<4‰) of δ15N observed in February 2016 coincided with a high freshwater inflow that accompanied a major storm, indicating a strong influence of untreated sewage. Results from a two end-member mixing model suggest that on average, the SPOM in the MCBs is composed of 44% terrestrial materials with the highest percent contributions in October 2015 and 2016 (61%), and lowest (28%) in July 2015. The contribution of terrestrial materials to the SPOM was highest (58%) near the mouth of St. Martin River and lowest (25%) near the Ocean City inlet. SPOM composition and distribution in MCBs are, therefore, a function of land use, freshwater inflow, and water circulation that influence in situ phytoplankton production, and the transport and distribution of terrestrially derived materials.

2016 ◽  
Vol 170 ◽  
pp. 70-82 ◽  
Author(s):  
Benoit Lebreton ◽  
Jennifer Beseres Pollack ◽  
Brittany Blomberg ◽  
Terence A. Palmer ◽  
Leslie Adams ◽  
...  

2020 ◽  
Vol 8 (12) ◽  
pp. 959 ◽  
Author(s):  
Mikhail S. Golubkov ◽  
Vera N. Nikulina ◽  
Alexei V. Tiunov ◽  
Sergey M. Golubkov

Knowledge of carbon and nitrogen isotopic ratios in organic matter and their changes is important when studying nutrient cycles in aquatic ecosystems. Relationships between δ13C and δ15N values of suspended particulate organic matter (POM), water temperature, salinity, pH, redox potential, chlorophyll a concentration, primary production, and biomasses of different taxonomic groups of phytoplankton in the Neva Estuary were statistically analyzed. We tested the hypothesis that the studied physicochemical and biogeochemical characteristics, as well as the species composition of phytoplankton and its productivity, can be significant predictors of changes in the isotopic ratios of suspended particulate organic matter in estuaries. In the Neva Estuary, δ13CPOM (−16.8–−27.6‰) and δ15NPOM (2.3–7.3‰) changed synchronously. Statistical analysis showed that for both isotopes, the photosynthetic activity and taxonomic composition of phytoplankton are important. For 13CPOM, the second most important factor was water salinity, which was apparently associated with the transition of algae from CO2 to HCO3 consumption during photosynthesis in estuarine waters. For 15NPOM changes, the most important abiotic factor was pH. The study showed that the dependences of POM isotopic ratios on environmental variables obtained for continental and oceanic waters are also valid in transitional zones such as the Neva Estuary.


2019 ◽  
Vol 262 ◽  
pp. 78-91 ◽  
Author(s):  
Meng Yu ◽  
Timothy I. Eglinton ◽  
Negar Haghipour ◽  
Daniel B. Montluçon ◽  
Lukas Wacker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document