scholarly journals Improving Regulation and the Role of Natural Risk Knowledge to Promote Sustainable Low Enthalpy Geothermal Energy Utilization

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2925
Author(s):  
Giorgio De Giorgio ◽  
Michele Chieco ◽  
Pier Paolo Limoni ◽  
Livia Emanuela Zuffianò ◽  
Vittoria Dragone ◽  
...  

The use of geothermal energy resources to support anthropogenic activities have a long-lasting tradition, renewed in recent decades with the increasing use of low enthalpy geothermal energy (LEG) with combined systems of heat pumps and geothermal exchange, exploiting the enormous thermal capacity and very low temperature variability of subsoil, including rocks and water. The further potential global increase of LEG use could be enormous, although LEG is already the main geothermal energy sources in Europe, contributing significantly to reach 2030 UN sustainable development goals (SDGs) on renewable energy resources, as a further leg to support all necessary efforts for these scopes. This research pursues LEG spreading improving knowledge on limitations of guidelines, technical regulations and/or laws, briefly rules, especially in terms of potential risks or limitations due to environmental constrains or natural phenomena. A global documentary research, including scientific articles, books, technical reports from qualified institutions, technical standards, guidelines, regulations, and laws, was realized with three different groups of keywords. A total of 161 documents were selected after some steps, including quality check. Identical English and Italian keyword sets were used to span from an international global scale to the complex local scale which characterizes the Italian experience. A complex sheet was filled in for each document, supporting data discussion, planned with a geographical criterion, from global to local. The system of rules resulted worldwide inhomogeneous and complex, with high differences from countries, nations or regions, also at local scale. The low quality or the absence of simple and careful “rules” emerged an important obstacle to LEG diffusion that can guarantee sustainability and the absence of natural risks. Main virtuous systems of rules were recognized as very useful to promote LEG spreading but these are still uncommon. The discussion of optimal experiences and the overview of potential natural risks due to LEG complete the paper.

2005 ◽  
Vol 9 (3) ◽  
pp. 15-23 ◽  
Author(s):  
Fajik Begic ◽  
Anes Kazagic

Along with the current processes of restructuring of Energy power system of Bosnia and Herzegovina, liberalization of the electricity market, and modernization of the existing power plants, Bosnia and Herzegovina must turn to the utilization of renewable resources in reason able dynamics as well. Respecting this policy, the initial Valuation of the potential of renewable erg resources in Bosnia and Herzegovina is per formed. The methodology of evaluation of wind energy utilization is presented in this paper, as well as some other aspects of utilization of the renewable energy resources in Bosnia and Herzegovina. Implementation of selected projects should improve sustainability of energy power production in Bosnia and Herzegovina, by reducing the total emission of carbon dioxide originated from energy power system of Bosnia and Herzegovina.


2020 ◽  
Author(s):  
Kaan Yamanturk ◽  
Cihan Dogruoz

As it is known, the utilization and production of renewable energy resources are very important in recent years. Due to its geological structural formations, Turkey has a serious geothermal energy potential as a renewable energy resource comparing with the other countries. West side of Turkey has also a critical role to use the geothermal energy resources. In these fields, geothermal is mostly used in electricity generation, greenhouse heating and locational requirements. The components while producing the geothermal water from wells such as heating pumps, re-injection pipes and other equipment are also significant. In this study, coefficient of performance (COP) utilizing in heat pumps has been investigated and the new approach to find out the parameter has been identified. Based on COP equation, the formula of COP has been re-coded on Dev C++ compiler by using C++ computer language in order to focus on the importance of computer aided applications in geothermal energy sector. There are no more studies showing the COP with C++ codes in literature. On the other hand, Germencik region, in the west side of Turkey, has been evaluated and the production processes by Guris Construction and Engineering Co. Inc. have been explained in the study. Moreover, the potential of Turkey has also been mentioned in this study. The aim of the study is to examine the Germencik region geothermal energy potential and to improve the coefficient of performance by using C++ in heat pumps. The result of this study shows us the Germencik region has an important potential and the computer aided technologies can also be adapted easily into the processes while producing geothermal energy.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yaling Chen ◽  
Yinpeng Liu

With the increasing share of renewable energy resources in the microgrid, the microgrid faces more and more challenges in its reliable operation. One major challenge is the potential congestion caused by the uncoordinated operation of flexible demands such as heat pumps and the high penetration of renewable energy resources such as photovoltaics. Therefore, it is important to conduct microgrid energy management to ensure its reliable operation. The energy storage system (ESS) scheduling as an efficient means to alleviate congestion has been widely used. However, in the existing literature, the ESSs are usually scheduled by the microgrid system operator (MSO) in a direct control manner, which is impractical in the case where customers own ESSs and are willing to schedule ESSs by themselves. To resolve this issue, this study proposes a network reconfiguration integrated dynamic tariff–subsidy (DTS) congestion management method to utilize ESSs and network reconfiguration to alleviate congestion in microgrids caused by renewable energy resources and flexible demands. In the proposed method, the MSO controls sectionalization switches while customers or aggregators schedule ESSs in response to DTS to alleviate congestion. The DTS calculation model is formulated as a mixed-integer linear programming model, considering heat pumps (HPs), ESSs, and reconfigurable microgrid topology. The numerical results demonstrate that the proposed method can effectively use ESSs and network topology to alleviate congestion and the MSO does not need to take over the scheduling of the ESS.


2020 ◽  
Vol 24 (6 Part A) ◽  
pp. 3685-3705
Author(s):  
Birol Kilkis

While moving towards 100% renewable district energy systems at low temperatures, the exergy of the district energy may decrease below the pumping exergy requirement, which eliminates the benefits of using low-exergy renewables. Because such a possibility may not be revealed by the First Law, an exergy-based holistic model for district energy systems was developed. Four tiers, namely renewable energy resources, energy conversion and storage, main district network, and the low-exergy district are identified. Each tier is indexed to the optimum plant-to-district distance for maximum exergy-based performance with minimum CO2 emissions responsibility. This model further optimizes the temperature peaking with heat pumps versus HVAC equipment oversizing and determines the optimum mix of renewables. Three alternatives of conveying and distributing exergy to the district were considered, namely: electricity only, electricity and heat with or without temperature peaking or equipment oversizing, and electricity, heat, and cold. Comparisons showed that the choice primarily depends upon the district size, district-to-plant distance, climatic conditions, local availability of RES, optimum supply temperature, and thermal condition of the buildings. Another algorithm optimizes the thermal insulation thickness in terms of equipment oversizing and temperature-peaking.


2021 ◽  
Vol 43 (9) ◽  
pp. 601-613
Author(s):  
Ertugrul Guresci

Objectives : The world is getting more polluted day by day and living conditions are getting harder and harder. The Covid 19 process explains this situation even better. Global warming will show its effect more heavily if measures are not taken. There is a close relationship between global warming and the type and method of energy used. The use of fossil fuels by people pollutes the environment too much, and the use of alternative energy sources is gaining importance instead. Here, the issue of use and management of renewable energy sources comes to the fore. Turkey is a country with rich renewable energy resources and experience in cooperatives. In this study, it is aimed to reveal the current situation and problems of renewable energy cooperatives, which can be a model for managing Turkey’s renewable energy resources.Methods : In the study, a literature review method was used by examining domestic and foreign resources related to renewable energy and renewable energy cooperatives. Some of the data obtained were arranged in tables and used in the study.Results and Discussion : It is very important for Turkey to develop renewable energy resources and increase the share of renewable energy resources among other resources. Because Turkey is a developing country and its population is increasing day by day. It is essential to use renewable energy for the energy need of the increasing population and the least environmental pollution. Within the scope of 2023 targets in Turkey, it is planned to produce 34 thousand MW of hydroelectric, 20 thousand MW of wind energy, solar energy, 5 thousand MW, 1,000 MW of geothermal energy and 1,000 MW of geothermal energy and biomass energy. In order to achieve this goal, it is planned to invest approximately 60 billion dollars in renewable energy sources. Cooperatives are one of the most effective ways in which Turkey can use its renewable energy resources. Because cooperative is a method known to the Turkish society and it would be beneficial to transfer it to the renewable energy field.Conclusion : Turkey is a developing country and its energy needs are increasing day by day. It is very important to use the renewable energy resources it has correctly and in a planned way. In this respect, it should be understood that renewable energy cooperatives are quite compatible with Turkey. Turkey should provide the necessary legal and administrative structure for the development of renewable energy cooperatives and develop it with financial support in order to make its increasing energy needs sustainable.


In the modern era, most of the utility grid is connected with Renewable Energy resources (RERs). In addition to this, many power electronic converters and reactive power compensating devices are also incorporated into the existing grid. This makes the system complicated. Penetration of renewable energy resources affect many power system parameters like grid stability, quality of power, reactive power balance and Sufficient energy utilization. However, the Distributed Generation (DG) towards the power electronic interface creates some critical power quality events such as reactive power management, harmonics and voltage profile which makes the distributed system become a polluted one. This paper depicts the review of modelling and incorporation of various reactive power compensating devices like TCSC, SVC and STATCOM into RES. Power generation model of solar, wind and fuel farm is discussed in this paper. Reactive power compensating devices and its location and sizing are important for the stable and secure operation of the electric grid. Consequently, power quality issues, real-time interconnection issues and policies related to reactive power management are in this paper.


2021 ◽  
Vol 12 (5) ◽  
pp. 38
Author(s):  
Maria Nzomo ◽  
Zerubabel Getachew

Energy is a crucial factor in international relations and a critical input to achieve global economic growth and development. Provision of affordable, sustainable, and reliable energy is necessary and a prerequisite for any country’s economic growth and prosperity. The United Nations Agenda 2030, through its Seventh Sustainable Development Goal (SGD 7) and the African Union Agenda 2063 Aspiration 1recognise the centrality of access to energy towards realising the ambitions enlisted in these documents. The asymmetric distribution of natural resources and the political, strategic, financial, and technological challenges in utilising these resources hinder countries from availing affordable, sustainable, and reliable energy by using domestic sources alone. The inability to attain energy independence makes a compelling case for nations to increasingly integrate their energy supply chains to international and regional energy markets. As a result, ensuring access to affordable energy has become a core interest of regional foreign relations. Therefore, if geopolitics permits, energy cooperation and interdependence become the ultimate and sustainable path towards energy security. Africa has tremendous potential ranging from hydrocarbons to renewable energies. Nevertheless, it has failed to provide adequate energy for its social and economic needs mainly due to poor governance and related challenges. Africa has to utilise such humongous and diversified energy resources by embracing an optimal energy mix that contributes to regional economic development and energy integration. Eastern Africa, home to various renewable energy resources, is one of the energy-poor regions in Africa. The prevailing energy system in the sub-region is hydro-based and lacks reliability. The sub-region has tremendous renewable energy resources such as wind, solar, and geothermal. Still, their utilisation is negligible due to several challenges, including governance and lack of access to finance and technology. This paper argues that an integrated and regional approach to developing the energy sector in Eastern Africa can address the energy-related challenges and contribute towards regional integration in Eastern Africa. In particular, the development of geothermal energy, within the optimal energy mix in the sub-region, for both power generation and direct use application will play a crucial role in forging energy integration in Eastern Africa. In this regard, regional institutions such as power pools and regional economic communities are indispensable.   Received: 27 June 2021 / Accepted: 5 August 2021 / Published: 5 September 2021


Sign in / Sign up

Export Citation Format

Share Document