scholarly journals Effects of Baekje Weir Operation on the Stream–Aquifer Interaction in the Geum River Basin, South Korea

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2984
Author(s):  
Hyeonju Lee ◽  
Min-Ho Koo ◽  
Byong Wook Cho ◽  
Yong Hwa Oh ◽  
Yongje Kim ◽  
...  

Hydraulic structures have a significant impact on riverine environment, leading to changes in stream–aquifer interactions. In South Korea, 16 weirs were constructed in four major rivers, in 2012, to secure sufficient water resources, and some weirs operated periodically for natural ecosystem recovery from 2017. The changed groundwater flow system due to weir operation affected the groundwater level and quality, which also affected groundwater use. In this study, we analyzed the changes in the groundwater flow system near the Geum River during the Baekje weir operation using Visual MODFLOW Classic. Groundwater data from 34 observational wells were evaluated to analyze the impact of weir operation on stream–aquifer interactions. Accordingly, the groundwater discharge rates increased from 0.23 to 0.45 cm/day following the decrease in river levels owing to weir opening, while the hydrological condition changed from gaining to losing streams following weir closure. The variation in groundwater flow affected the groundwater quality during weir operation, changing the groundwater temperature and electrical conductivity (EC). Our results suggest that stream–aquifer interactions are significantly affected by weir operation, consequently, these repeated phenomena could influence the groundwater quality and groundwater use.

2011 ◽  
Vol 25 (17) ◽  
pp. 2654-2664 ◽  
Author(s):  
Tsutomu Yamanaka ◽  
Jun Shimada ◽  
Maki Tsujimura ◽  
Oranuj Lorphensri ◽  
Makoto Mikita ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Tada-nori Goto ◽  
Kazuya Kondo ◽  
Rina Ito ◽  
Keisuke Esaki ◽  
Yasuo Oouchi ◽  
...  

Self-potential (SP) measurements were conducted at Mt. Tsukuba, Japan, which is a nonvolcanic mountain, to infer groundwater flow system in the mountain. Survey routes were set around the northern slope, and the reliability of observed SP anomaly was checked by using SP values along parallel survey routes; the error was almost within 10 mV. The FFT analysis of the spatial SP distribution allows us a separation of raw data into two components with shorter and longer wavelength. In the shorter (altitudinal) wavelength than ∼200 meters, several positive SP peaks of more than 100 mV in magnitude are present, which indicate shallow perched water discharges along the slope. In the regional SP pattern of longer wavelength, there are two major perturbations from the general trend reflecting the topographic effect. By comparing the SP and hydrological data, the perturbation around the foothill is interpreted to be caused by heterogeneous infiltration at the ground surface. The perturbation around the summit is also interpreted to be caused by heterogeneous infiltration process, based on a simplified numerical modeling of SP. As a result, the SP pattern is well explained by groundwater flow and infiltration processes. Thus, SP data is thought to be very useful for understanding of groundwater flow system on a mountain scale.


2010 ◽  
Vol 52 (4) ◽  
pp. 333-334
Author(s):  
Shin-ichi ONODERA ◽  
Akinobu MIYAKOSHI

Sign in / Sign up

Export Citation Format

Share Document