groundwater flow model
Recently Published Documents


TOTAL DOCUMENTS

286
(FIVE YEARS 41)

H-INDEX

26
(FIVE YEARS 1)

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 255
Author(s):  
Marko Šrajbek ◽  
Lado Kranjčević ◽  
Ivan Kovač ◽  
Ranko Biondić

Nitrates are one of the most common groundwater contaminants and they come from different sources. The paper presents a study of groundwater quality at Varaždin wellfield in the north part of Croatia. The nitrate concentration at this location has been above the maximum allowed concentration for several decades, which has made the opening of new wellfields costly. Based on the previously developed groundwater flow model, a model that covers the narrow area of the wellfield is developed. The influential zone of the observed wellfield in working conditions is determined. Based on the developed model, the sources of nitrate pollution are located, which can be generally divided into non-point and point sources. Considering the time of groundwater retention in the horizontal flow, it is concluded that the water protection zones are marked following the applicable ordinance. Based on the developed groundwater flow model at the observed wellfield, a simulation of nitrate pollution propagation by advection and dispersion processes is performed. The simulation results point out the location of the poultry landfill as the largest source of nitrate pollution. However, poultry farms, which are located in the influence area of the wellfield, also contribute significantly to the nitrate concentration at the wellfield.


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 92
Author(s):  
Bo Meng ◽  
Mingjie Li ◽  
Xinqiang Du ◽  
Xueyan Ye

Sponge City is an integrated urban stormwater management approach and practice to tackle waterlogging, flooding, water scarcity, and their related problems. Despite many positive effects of Sponge City on flood control that have been investigated and revealed, the effect on aquifer recharge is still less known. Considering maximizing the function of natural elements such as surface water bodies and subsurface storage space, to minimize the use of a gray drainage system, a Sponge City design was proposed to substitute the planning development scheme in the study area. The stormwater management model of SWMM (storm water management model) and the groundwater flow model of MODFlow (Modular Three-dimensional Finite-difference Groundwater Flow Model) were adopted to evaluate the flood-control effect and aquifer-recharge effect, respectively. Compared with the traditional planning scenario, the peak runoff is approximately 92% less than that under the traditional planning scenario under the condition of a 5-year return period. Due to the increase in impervious areas of urban construction, the total aquifer recharge from precipitation and surface water bodies was decreased both in the present planning scenario and the Sponge City design scenario. However, the Sponge City design has a positive impact on maintaining groundwater level stabilization and even raises the groundwater level in some specific areas where stormwater seepage infrastructure is located.


2022 ◽  
Author(s):  
Kendall M. FitzGerald ◽  
Wonsook S. Ha ◽  
Adel E. Haj ◽  
Lance R. Gruhn ◽  
Emilia L. Bristow ◽  
...  

2021 ◽  
pp. 509-527
Author(s):  
Mohsen Sherif ◽  
Abdel Azim Ebraheem ◽  
Ampar Shetty ◽  
Ahmed Sefelnasr ◽  
Khaled Alghafli ◽  
...  

AbstractIn Ras Al Khaimah, UAE, groundwater from the alluvial aquifer in Wadi Bih was the only source of freshwater for various uses prior to the construction of a seawater desalination plant in 1998. This study was conducted to evaluate the effect of the Wadi Bih dam on groundwater resources and to increase knowledge of the hydrodynamics of the aquifer. A local-scale numerical groundwater flow model was developed and used to investigate the impacts of different groundwater management options on groundwater resources. The calibrated and validated model was defined as the base case, and subsequently, simulations were performed to analyze different management scenarios. The simulations indicated that maximum recharge occurred during years of high rainfall (1995–1998). Minimum recharge occurred in 2000, 2002, and 2004. The major contribution to the water balance was from subsurface inflows from the upper wadi zone and the two tributaries. Overall, the annual water balance was negative in most years, with an average net decline of 0.6 MCM per year, indicating a slow but continuous depletion of groundwater resources. At the end of the simulation, the total groundwater recharge due to rainfall and water storage in the ponding area was 9.81 MCM.


2021 ◽  
pp. 47-57
Author(s):  
L.I. Petrenko ◽  
I.M. Romanyuk ◽  
N.B. Kasteltseva ◽  
I.A. Persits

Global warming, as well as contamination of surface and ground water are currently the main factors that make the search for alternative sources of drinking water extremely pressing. The majority of aquifers commonly exploited for drinking water supply are contained in sedimentary deposits. Utilization of groundwater in fractured crystalline waterbearing rocks may be an alternative source of drinking water. However, experience in effective use of fractured rocks aquifer for water supply is very poor due to the lack of data on the crystalline rocks fracturing and, accordingly, their water-bearing capacity. Improving the effectiveness of using such geological environments is a very challenging task, yet possible with artificial recharge of crystalline rocks aquifers. Computation modeling is a widespread and proven way to study groundwater behavior in sedimentary deposits, unlike in fractured crystalline rocks. The present study focuses on the groundwater flow model to consider the method of improving the productivity of water intake wells in fractured crystalline rocks aquifer through artificially increase of the rocks’ fracturing. On the groundwater flow model for the Zhashkiv groundwater deposit, several scenarios with increase of the crystalline rocks fracturing were simulated and the effect on changing the well pumping rate was evaluated for one of the wells.


2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Meriem Lghoul ◽  
Karim Sbihi ◽  
Abdelkabir Maqsoud ◽  
Rachid Hakkou ◽  
Azzouz Kchikach

AbstractIn this study, we present the efficiency of remediation scenario to attenuate the impact of acid mine drainage (AMD) contamination in the Kettara abandoned mine site. The study focuses on the AMD groundwater contamination of the Sarhlef shists aquifer. To predict the evolution of AMD groundwater contamination in the Kettara mine site under remediation scenario, a model of groundwater flow and AMD transport was performed.Piezometric heads were measured at the dry and wet periods from eleven wells located downstream of mine wastes. To elaborate a conceptual groundwater flow model, we faced with to the heterogeneity and anisotropy of fractured Sarhlef shists aquifer. Consequently, the study focused on the use of various approaches: 1. The inverse modeling by the CMA-ES algorithm is adopted as an alternative approach to determine hydraulic parameters indirectly, and 2. the model is treated as an equivalent porous media (EPM). The groundwater flow model was carried out in steady-state and transient conditions in the dry and wet periods using the PMWIN interface. The obtained results are satisfactory and show an excellent correlation between measured and computed heads. Contaminant transport model is used to solve the advection–dispersion equation and to generate the AMD concentration by MT3D via the PMWIN interface. A sensitivity analysis of the dispersivity coefficient is carried out. The AMD transport simulation was computed during periods of 1, 5 and 10 years, and the performed model indicates that the simulated concentrations under remediation scenario are reduced 1000 times comparing to the current concentrations. The study revealed a necessary approach in addressing an environmental issue for the AMD contamination. The results of the study will be a start-up for further research work in the study area and implementing it for the prevention of AMD propagation plume.


2021 ◽  
pp. 91-97
Author(s):  
V. V. Suskin ◽  
A. V. Rastorguev ◽  
I. V. Kapyrin

This article discusses a three-dimensional groundwater flow model of a deep disposal facility at Severny test site. The three-dimensional model is a part of the certified software GEOPOLIS, based on the hydrogeological code GeRa (Geomigration of Radionuclides) serving as the calculation engine. This study describes the hydrogeological patterning of the groundwater flow model, as well as the results of calibration and verification of the model water heads with respect to the data of monitoring for more than 40 years of the deep repository exploitation. The article begins with a brief overview of the previously developed hydrogeological models of this object and continues with a description of the geological structure of the territory, and with a substantiation of the boundaries and parameters of the model. The results of groundwater flow modeling, model calibration, verification and estimation of discrepancy between the model results and monitoring data are shown. The comparison of the modeled and observed water heads in the stationary conditions (before the start of injection) and during operation of the deep repository allows making conclusion on the quality of calibration.


Sign in / Sign up

Export Citation Format

Share Document