scholarly journals Skip the Dip—Avoid the Risk? Integrated Microbiological Water Quality Assessment in the South-Eastern Baltic Sea Coastal Waters

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3146
Author(s):  
Greta Gyraite ◽  
Marija Kataržytė ◽  
Donata Overlingė ◽  
Diana Vaičiūtė ◽  
Eglė Jonikaitė ◽  
...  

The bathing water microbiome consists of pathogenic and non-pathogenic microorganisms, such as bacteria, viruses, and protozoa. However, the targets of the Bathing Water Directive (2006/7/EC) focus exclusively on fecal pollution. This study aims to investigate fecal indicator bacteria (FIB), naturally thriving cyanobacteria, and Vibrio bacteria in the Lithuanian coastal Baltic Sea and Curonian Lagoon bathing sites, combining information into an integrated microbial risk assessment scheme. The results show that officially monitored indicators, such as FIB, do not exceed the acceptable ‘low’ risk threshold. Simultaneously, cyanobacteria and Vibrio cholerae abundance in the Curonian Lagoon sites reveal a ‘high’ probability of adverse health effects. In coastal bathing sites, a positive correlation was found between Escherichia coli, cyanobacterial harmful algae bloom (cHAB), and V. cholerae, indicating that all target microorganisms may occur at the same time, with consequently high risks for the health of bathers. Therefore, implementing new target organisms in national or even regional bathing water monitoring programs is recommended, in order to safeguard the health of beachgoers.

2013 ◽  
Vol 11 (4) ◽  
pp. 636-646 ◽  
Author(s):  
S. T. Andersen ◽  
A. C. Erichsen ◽  
O. Mark ◽  
H.-J. Albrechtsen

Quantitative microbial risk assessments (QMRAs) often lack data on water quality leading to great uncertainty in the QMRA because of the many assumptions. The quantity of waste water contamination was estimated and included in a QMRA on an extreme rain event leading to combined sewer overflow (CSO) to bathing water where an ironman competition later took place. Two dynamic models, (1) a drainage model and (2) a 3D hydrodynamic model, estimated the dilution of waste water from source to recipient. The drainage model estimated that 2.6% of waste water was left in the system before CSO and the hydrodynamic model estimated that 4.8% of the recipient bathing water came from the CSO, so on average there was 0.13% of waste water in the bathing water during the ironman competition. The total estimated incidence rate from a conservative estimate of the pathogenic load of five reference pathogens was 42%, comparable to 55% in an epidemiological study of the case. The combination of applying dynamic models and exposure data led to an improved QMRA that included an estimate of the dilution factor. This approach has not been described previously.


Author(s):  
Zelfa Hamadieh ◽  
Kerry A. Hamilton ◽  
Andrea I. Silverman

Abstract Human noroviruses are a leading cause of food- and water-borne disease, which has led to an interest in quantifying norovirus health risks using quantitative microbial risk assessment (QMRA). Given the limited availability of quantitative norovirus data to input to QMRA models, some studies have applied a conversion factor to estimate norovirus exposure based on measured fecal indicator bacteria (FIB) concentrations. We conducted a review of peer-reviewed publications to identify the concentrations of noroviruses and FIB in raw, secondary-treated, and disinfected wastewater. A meta-analysis was performed to determine the ratios of norovirus-FIB pairs in each wastewater matrix and the variables that significantly impact these ratios. Norovirus-to-FIB ratios were found to be significantly impacted by the norovirus genotype, month of sample collection, geographic location, and the extent of wastewater treatment. Additionally, we evaluated the impact of using a FIB-to-virus conversion factor in QMRA and found that the choice of conversion ratio has a great impact on estimated health risks. For example, the use of a conversion ratio previously used in the World Health Organization Guidelines for the Safe Use of Wastewater, Excreta and Greywater predicted health risks that were significantly lower than those estimated with measured norovirus concentrations used as inputs. This work emphasizes the gold standard of using measured pathogen concentrations directly as inputs to exposure assessment in QMRA. While not encouraged, if one must use a FIB-to-virus conversion ratio to estimate norovirus dose, the ratio should be chosen carefully based on the target microorganisms (i.e., strain, genotype, or class), prevalence of disease, and extent of wastewater treatment.


2015 ◽  
Vol 3 (0) ◽  
pp. 9781780404141-9781780404141
Author(s):  
J. A. Soller ◽  
A. W. Olivieri ◽  
J. N. S. Eisenberg ◽  
R. Sakajii ◽  
R. Danielson

LWT ◽  
2021 ◽  
Vol 144 ◽  
pp. 111201 ◽  
Author(s):  
Prez Verónica Emilse ◽  
Victoria Matías ◽  
Martínez Laura Cecilia ◽  
Giordano Miguel Oscar ◽  
Masachessi Gisela ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document