scholarly journals Optimization of Water Quality Monitoring Networks Using Metaheuristic Approaches: Moscow Region Use Case

Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 888
Author(s):  
Elizaveta Yudina ◽  
Anna Petrovskaia ◽  
Dmitrii Shadrin ◽  
Polina Tregubova ◽  
Elizaveta Chernova ◽  
...  

Currently many countries are struggling to rationalize water quality monitoring stations which is caused by economic demand. Though this process is essential indeed, the exact elements of the system to be optimized without a subsequent quality and accuracy loss still remain obscure. Therefore, accurate historical data on groundwater pollution is required to detect and monitor considerable environmental impacts. To collect such data appropriate sampling and assessment methodologies with an optimum spatial distribution augmented should be exploited. Thus, the configuration of water monitoring sampling points and the number of the points required are now considered as a fundamental optimization challenge. The paper offers and tests metaheuristic approaches for optimization of monitoring procedure and multi-factors assessment of water quality in “New Moscow” area. It is shown that the considered algorithms allow us to reduce the size of the training sample set, so that the number of points for monitoring water quality in the area can be halved. Moreover, reducing the dataset size improved the quality of prediction by 20%. The obtained results convincingly demonstrate that the proposed algorithms dramatically decrease the total cost of analysis without dampening the quality of monitoring and could be recommended for optimization purposes.

Author(s):  
Jose Simmonds ◽  
Juan A. Gómez ◽  
Agapito Ledezma

This article contains a multivariate analysis (MV), data mining (DM) techniques and water quality index (WQI) metrics which were applied to a water quality dataset from three water quality monitoring stations in the Petaquilla River Basin, Panama, to understand the environmental stress on the river and to assess the feasibility for drinking. Principal Components and Factor Analysis (PCA/FA), indicated that the factors which changed the quality of the water for the two seasons differed. During the low flow season, water quality showed to be influenced by turbidity (NTU) and total suspended solids (TSS). For the high flow season, main changes on water quality were characterized by an inverse relation of NTU and TSS with electrical conductivity (EC) and chlorides (Cl), followed by sources of agricultural pollution. To complement the MV analysis, DM techniques like cluster analysis (CA) and classification (CLA) was applied and to assess the quality of the water for drinking, a WQI.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1984 ◽  
Author(s):  
Thanda Thatoe Nwe Win ◽  
Thom Bogaard ◽  
Nick van de Giesen

Newly developed mobile phone applications in combination with citizen science are used in different fields of research, such as public health monitoring, environmental monitoring, precipitation monitoring, noise pollution measurement and mapping, earth observation. In this paper, we present a low-cost water quality mobile phone measurement technique combined with sensor and test strips, and reported the weekly-collected data of three years of the Ayeyarwady River system by volunteers at seven locations and compared these results with the measurements collected by the lab technicians. We assessed the quality of the collected data and their reliability based on several indicators, such as data accuracy, consistency, and completeness. In this study, six local governmental staffs and one middle school teacher collected baseline water quality data with high temporal and spatial resolution. The quality of the data collected by volunteers was comparable to the data of the experienced lab technicians for sensor-based measurement of electrical conductivity and transparency. However, the lower accuracy (higher uncertainty range) of the indicator strips made them less useful in the Ayeyarwady with its relatively small water quality variations. We showed that participatory water quality monitoring in Myanmar can be a serious alternative for a more classical water sampling and lab analysis-based monitoring network, particularly as it results in much higher spatial and temporal resolution of water quality information against the very modest investment and running costs. This approach can help solving the invisible water crisis of unknown water quality (changes) in river and lake systems all over the world.


2019 ◽  
Vol 281 ◽  
pp. 03004 ◽  
Author(s):  
François Destandau ◽  
Youssef Zaiter

The Water Framework Directive 2000/60/EC draw attention to Water Quality Monitoring Networks (WQMN) that allows the acquisition of information regarding water streams. Information could be acquired by a spatial and/or temporal approach. However, there is a cost for monitoring water quality. Hence, to determine the spatio-temporal design of the network, the Economic Value of Information must be known to undertake a cost-benefit analysis. In this study, we show how the calculation of the EVOI can help the network manager to answer questions such as: is the cost of monitoring justified? How to allocate a budget between adding a monitoring station or increasing the frequency of measurement of existing stations?


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Prasad M. Pujar ◽  
Harish H. Kenchannavar ◽  
Raviraj M. Kulkarni ◽  
Umakant P. Kulkarni

AbstractIn this paper, an attempt has been made to develop a statistical model based on Internet of Things (IoT) for water quality analysis of river Krishna using different water quality parameters such as pH, conductivity, dissolved oxygen, temperature, biochemical oxygen demand, total dissolved solids and conductivity. These parameters are very important to assess the water quality of the river. The water quality data were collected from six stations of river Krishna in the state of Karnataka. River Krishna is the fourth largest river in India with approximately 1400 km of length and flows from its origin toward Bay of Bengal. In our study, we have considered only stretch of river Krishna flowing in state of Karnataka, i.e., length of about 483 km. In recent years, the mineral-rich river basin is subjected to rapid industrialization, thus polluting the river basin. The river water is bound to get polluted from various pollutants such as the urban waste water, agricultural waste and industrial waste, thus making it unusable for anthropogenic activities. The traditional manual technique that is under use is a very slow process. It requires staff to collect the water samples from the site and take them to the laboratory and then perform the analysis on various water parameters which is costly and time-consuming process. The timely information about water quality is thus unavailable to the people in the river basin area. This creates a perfect opportunity for swift real-time water quality check through analysis of water samples collected from the river Krishna. IoT is one of the ways with which real-time monitoring of water quality of river Krishna can be done in quick time. In this paper, we have emphasized on IoT-based water quality monitoring by applying the statistical analysis for the data collected from the river Krishna. One-way analysis of variance (ANOVA) and two-way ANOVA were applied for the data collected, and found that one-way ANOVA was more effective in carrying out water quality analysis. The hypotheses that are drawn using ANOVA were used for water quality analysis. Further, these analyses can be used to train the IoT system so that it can take the decision whenever there is abnormal change in the reading of any of the water quality parameters.


Sign in / Sign up

Export Citation Format

Share Document