scholarly journals Long-Term Analysis of Precipitation in Slovakia

Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 952
Author(s):  
Adam Repel ◽  
Martina Zeleňáková ◽  
Vinayakam Jothiprakash ◽  
Helena Hlavatá ◽  
Peter Blišťan ◽  
...  

Precipitation and its development over time is an important indicator of climate change. Research on long-term precipitation totals is absent in the Slovak Republic. This paper deals with the statistical analysis of daily precipitation from 48 precipitation stations in Slovakia. The paper evaluates the spatial distribution of precipitation in Slovakia and also presents analyses of stationarity and trends using the Mann-Kendall test. Emphasis is placed especially on the evaluation of the trends in total annual precipitation, maximum daily precipitation and also the number of days without precipitation in the year. By evaluating the trends in these three indicators, it is possible to assess the impact of potential change in the temporal and spatial distribution of precipitation on hydrological drought and floods. The results show that there are currently no significant changes in precipitation in Slovakia. The problem of floods and hydrological drought seems to be more complex and is mainly due to surface water drainage from the landscape and the change in its use in connection with the increase in the average annual temperature.

2020 ◽  
Author(s):  
Marjolein H.J. van Huijgevoort ◽  
Janine A. de Wit ◽  
Ruud P. Bartholomeus

<p>Extreme dry conditions occurred over the summer of 2018 in the Netherlands. This severe drought event led to very low groundwater  and surface water levels. These impacted several sectors like navigation, agriculture, nature and drinking water supply. Especially in the Pleistocene uplands of the Netherlands, the low groundwater levels had a large impact on crop yields and biodiversity in nature areas. Projections show that droughts with this severity will occur more often in the future due to changes in climate. To mitigate the impact of these drought events, water management needs to be altered.</p><p>In this study, we evaluated the 2018 drought event in the sandy regions of the Netherlands and studied which measures could be most effective to mitigate drought impact. We have included meteorological, soil moisture and hydrological drought and the propagation of the drought through these types. Droughts were determined with standardized indices (e.g. Standardized Precipitation Index) and the variable threshold level method. Investigated measures were, for example, higher water levels in ditches, reduced irrigation from groundwater, and increased water conservation in winter. We also studied the timing of these measures to determine the potential for mitigating effects during a drought versus the effectiveness of long term adaptation. The measures were simulated with the agro-hydrological Soil–Water–Atmosphere–Plant (SWAP) model for several areas across the Netherlands for both agricultural fields and nature sites.</p><p>As expected, decreasing irrigation from groundwater reduced the severity of the hydrological drought in the region. Severity of the soil moisture drought also decreased in fields that were never irrigated due to the effects of capillary rise from the groundwater, but, as expected, increased in currently irrigated fields. Increasing the level of a weir in ditches had a relatively small effect on the hydrological drought, provided water was available to sustain higher water levels. This measure is, therefore, better suited as a long term change than as ad hoc measure during a drought. The effectiveness of the measures depended on the characteristics of the regions; for some regions small changes led to increases in groundwater levels for several months, whereas in other regions effects were lost after a few weeks. This study gives insight into the most effective measures to mitigate drought impacts in low-lying sandy regions like the Netherlands.</p>


2020 ◽  
Vol 21 (5) ◽  
pp. 1451-1465
Author(s):  
Jan Dvorsky ◽  
Tomas Kliestik ◽  
Martin Cepel ◽  
Zdenek Strnad

The impact of significant competition factors on the riskiness of business risk in the SMEs sector in the Czech Republic and Slovak Republic. The empirical research was constructed on the basis a questionnaire. The attitudes from 641 entrepreneurs from two countries were collected during the year 2018. The statistical hypotheses were evaluated using quantitative methods. The multiple linear regression models were used to evaluate the impact of the competitive environment and of the narrow business environment on the perception of the riskiness of business risk according to entrepreneurs. The conclusions ofthe research showed an interesting finding. The authors found that the competitive environment, as well as the narrower business environment, affects the perception of the riskiness of business risk. It has also been shown that my customers accept the prices of my products and services. This is the most important indicator of a competitive environment. The most important indicator of a narrower business environment is that my customers support me in doing business. The authors believe that the article has brought several interesting findings and new incentives for the further research and discussion regarding to the perception of enterprise risk not only in the selected countries this research.


2020 ◽  
Author(s):  
Mauricio Zambrano-Bigiarini ◽  
Cristóbal Soto Escobar ◽  
Oscar M. Baez-Villanueva

<p>The Intensity-Duration-Frequency (IDF) curves are crucial for urban drainage design and to mitigate the impact of extreme precipitation events and floods. However, many regions lack a high-density network of rain gauges to adequately characterise the spatial distribution of precipitation events. In this work we compute IDF curves for the South-Central Chilean region (26-56°S) using the latest version of the Integrated Multi-satellitE Retrievals for GPM (IMERGv06B) for 2001-2018, with a spatial resolution of 0.10° and half-hourly temporal frequency.</p><p><br>First, we evaluated the performance of IMERGv06B against 344 rain gauge stations at daily, monthly and annual temporal scales using a point-to-pixel approach. The modified Kling-Gupta efficiency (KGE’) and its components (linear correlation, bias, and variability ratio) were selected as continuous indices of performance. Secondly, we fit maximum precipitation intensities from 14 long-term rain gauge stations to three probability density functions (Gumbel, Log-Pearson Type III, and GEV II) to evaluate: i) the impact of using 15-year rainfall time series in the computation of IDF curves instead of using the typical long-term periods (~ 30 years); and ii) to select the best distribution function for the study area. The Gumbel distribution was selected to obtain the maximum annual intensities for each grid-cell within the study area for 12 durations (0.5, 1, 2, 4, 6, 8, 10, 12, 18, 24, 48, and 72 h) and 6 return periods (T=2, 5, 10, 25, 50, and 100 years).</p><p><br>The application of the Wilcoxon Mann-Whitney test indicates that differences between IDF curves obtained from 15 years of records at the 14 long-term rain gauges and those derived from 25 years of record (or more) are not statistically significant, and therefore, 15 years of record are enough (although not optimal) to compute the IDF curves. Also, our results show that IMERGv06B is able to represent the spatial distribution of precipitation at daily, monthly and annual temporal scales over the study area. Moreover, the obtained precipitation intensities showed high spatial variability, mainly over the Near North (26.0-32.2°S) and the Far South (43.7-56.0°S). Additionally, the intensities from Central Chile (32.2-36.4°S) to the Near South (36.4-43.7°S) were systematically higher compared to the intensities described in older official governmental reports, suggesting an increase in precipitation intensities during recent decades.</p>


2020 ◽  
Author(s):  
Yanqing Lang ◽  
Xiaohuan Yang ◽  
Hongyan Cai

<p>Soil erosion is the results of the combined effects of natural factors and human activities. Since modern times, human activities are the main causes of soil erosion and plays a key role in the process of soil erosion, both promoting and inhibiting. Therefore, identifying the impact of human activities on soil erosion is of great significance to control and transform the impact of human activities reasonably and effectively. In this study, Jiangxi province is taken as the study area, the main patterns of human activities affecting soil erosion are sorted out and the spatial distribution of human activities is identified, and the impact of human activities on soil erosion is assessed. This study aims to reveal the temporal and spatial distribution of different human activities affecting soil erosion and explore the relationships between different human activities and soil erosion, and to provide data support, scientific reference and policy suggestions for soil erosion control and land resources management in Jiangxi province.</p>


PLoS ONE ◽  
2017 ◽  
Vol 12 (9) ◽  
pp. e0183574 ◽  
Author(s):  
Dandan Chen ◽  
Yong Zhang ◽  
Liangpeng Gao ◽  
Nana Geng ◽  
Xuefeng Li

2020 ◽  
Vol 36 (3) ◽  
pp. 181-188 ◽  
Author(s):  
Sara E. Williams ◽  
Kendra J. Homan ◽  
Susan L. Crowley ◽  
David W. Pruitt ◽  
Andrew B. Collins ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document