scholarly journals The Flow Pattern Transition and Water Holdup of Gas–Liquid Flow in the Horizontal and Vertical Sections of a Continuous Transportation Pipe

Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2077
Author(s):  
Guishan Ren ◽  
Dangke Ge ◽  
Peng Li ◽  
Xuemei Chen ◽  
Xuhui Zhang ◽  
...  

A series of experiments were conducted to investigate the flow pattern transitions and water holdup during oil–water–gas three-phase flow considering both a horizontal section and a vertical section of a transportation pipe simultaneously. The flowing media were white mineral oil, distilled water, and air. Dimensionless numbers controlling the multiphase flow were deduced to understand the scaling law of the flow process. The oil–water–gas three-phase flow was simplified as the two-phase flow of a gas and liquid mixture. Based on the experimental data, flow pattern maps were constructed in terms of the Reynolds number and the ratio of the superficial velocity of the gas to that of the liquid mixture for different Froude numbers. The original contributions of this work are that the relationship between the transient water holdup and the changes of the flow patterns in a transportation pipe with horizontal and vertical sections is established, providing a basis for judging the flow patterns in pipes in engineering practice. A dimensionless power-law correlation for the water holdup in the vertical section is presented based on the experimental data. The correlation can provide theoretical support for the design of oil and gas transport pipelines in industrial applications.

2011 ◽  
Vol 66-68 ◽  
pp. 1187-1192 ◽  
Author(s):  
Hai Qin Wang ◽  
Yong Wang ◽  
Lei Zhang

Experiments were conducted in a horizontal multiphase flow test loop (50mm inner diameter, 40m long) to study the flow patterns for oil-gas-water three-phase flow and the pressure gradient fluctuation based on flow patterns. Using new methods of definition, 12 types of flow patterns were obtained and phase distribution characteristics of each pattern were analyzed. A new flow pattern (SW║IN) was firstly found in this work. Characteristics of the pressure gradient based on 7 flow patterns were carefully discussed. It was found that the pressure gradient increased with the increase of gas superficial velocity and oil-water mixture velocity. However, characteristics of the pressure gradient became complex with the increase of input water cut. The influence of flow structure of oil-water two-phase should be fully considered.


2016 ◽  
Vol 366 ◽  
pp. 144-150
Author(s):  
Boniek Evangelista Leite ◽  
Severino Rodrigues de Farias Neto ◽  
Antonio Gilson Barbosa de Lima ◽  
Lígia Rafaely Barbosa Sarmento

The onshore and offshore production of oil and natural gas is characterized by the multiphase flow in ducts and pipes, which are interconnected by various equipments such as wellhead, pumps, compressors, processing platforms, among others. The transport of oil and oil products is essential to the viability of the sector, but is susceptible to failures, that can cause great environmental damage. Considering this necessity of the transportation sector of oil and derivatives, leakage in pipelines with curved connections, are the object of study for various researchers. In this sense, this work contributes to the study of three-phase flow (oil-water-gas) in a curved pipe (90°) using Computational Fluid Dynamics. The physical domain is constituted by two tubes of 4 meters trenched by a 90° curve, with the poring whole in the curvated accessory. The mathematical model is based on a particle model, where the oil is considered as a continuous phase and the water and gas as a particulate phase. The SST (Shear Stress Transport) turbulence model was adopted. All simulations were carried out using the Ansys CFX® 12.1 commercial code. Results of the pressure, velocity and volumetric fraction of the phases are presented and discussed.


2013 ◽  
Vol 28 (03) ◽  
pp. 306-316 ◽  
Author(s):  
Shufan Wang ◽  
Hong-Quan Zhang ◽  
Cem Sarica ◽  
Eduardo Pereyra

2011 ◽  
Vol 402 ◽  
pp. 816-819
Author(s):  
Hai Qin Wang ◽  
Yong Wang ◽  
Lei Zhang ◽  
Jin Hai Gong ◽  
Zhen Yu Wang

The experiments were conducted in a horizontal multiphase flow test loop (50mm inner diameter, 40m long) and the cross-correlation technology was used for the study of the characteristics of the interfacial wave velocity about two types of annular flow regimes (AN║DO/W and AN║DW/O) for gas-oil-water three-phase flow. The results show that the interfacial wave velocity on the liquid film of AN║DO/W flow pattern and AN║DW/O flow pattern all increases with the increase of gas superficial velocity and liquid superficial velocity on the condition of fixed ratio of oil and water flow rates, but the difference is that the increase is a linear monotonic increase for AN║DO/W flow pattern and a non-linear increase for AN║DW/O flow pattern, and the liquid superficial velocity makes a larger contribution than the gas superficial velocity. The interfacial wave velocity also increases with the increase of input water cut in liquid at different gas superficial velocities under the conditions of liquid superficial velocity fixed.


2020 ◽  
Vol 159 ◽  
pp. 505-528
Author(s):  
Muhammad Waqas Yaqub ◽  
Ramasamy Marappagounder ◽  
Risza Rusli ◽  
Reddy Prasad D.M. ◽  
Rajashekhar Pendyala

Sign in / Sign up

Export Citation Format

Share Document