scholarly journals Physics of Traveling Waves in Shallow Water Environment

Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 2990
Author(s):  
Igor Shugan ◽  
Sergey Kuznetsov ◽  
Yana Saprykina ◽  
Yang-Yih Chen

We present a study of the physical characteristics of traveling waves at shallow and intermediate water depths. The main subject of study is to the influence of nonlinearity on the dispersion properties of waves, their limiting heights and steepness, the shape of solitary waves, etc. A fully nonlinear Serre–Green–Naghdi-type model, a classical weakly nonlinear Boussinesq model and fifth-order Stokes wave solutions were chosen as models for comparison. The analysis showed significant, if not critical, differences in the effect of nonlinearity on the properties of traveling waves for these models. A comparison with experiments was carried out on the basis of the results of a joint Russian–Taiwanese experiment, which was carried out in 2015 at the Tainan Hydraulic Laboratory, and on available experimental data. A comparison with the experimental results confirms the applicability of a completely nonlinear model for calculating traveling waves over the entire range of applicability of the model in contrast to the Boussinesq model, which shows contradictory and unrealistic wave properties for moderate wavelengths.

2000 ◽  
Vol 405 ◽  
pp. 181-210 ◽  
Author(s):  
MAURÍCIO F. GOBBI ◽  
JAMES T. KIRBY ◽  
GE WEI

A Boussinesq-type model is derived which is accurate to O(kh)4 and which retains the full representation of the fluid kinematics in nonlinear surface boundary condition terms, by not assuming weak nonlinearity. The model is derived for a horizontal bottom, and is based explicitly on a fourth-order polynomial representation of the vertical dependence of the velocity potential. In order to achieve a (4,4) Padé representation of the dispersion relationship, a new dependent variable is defined as a weighted average of the velocity potential at two distinct water depths. The representation of internal kinematics is greatly improved over existing O(kh)2 approximations, especially in the intermediate to deep water range. The model equations are first examined for their ability to represent weakly nonlinear wave evolution in intermediate depth. Using a Stokes-like expansion in powers of wave amplitude over water depth, we examine the bound second harmonics in a random sea as well as nonlinear dispersion and stability effects in the nonlinear Schrödinger equation for a narrow-banded sea state. We then examine numerical properties of solitary wave solutions in shallow water, and compare model performance to the full solution of Tanaka (1986) as well as the level 1, 2 and 3 solutions of Shields & Webster (1988).


2011 ◽  
Vol 45 (3) ◽  
pp. 69-76 ◽  
Author(s):  
Tom Fedenczuk ◽  
Eva-Marie Nosal

AbstractShallow water acoustics provide a means for monitoring and surveillance of near-shore environments. This paper describes the current and future capabilities of the low- to high-frequency Hawaii Experimental Acoustics Range (HEAR) that was designed to facilitate a wide range of different shallow water acoustics experiments and allow researchers from various institutions to test various array components and configurations. HEAR is a portable facility that consists of multiple hydrophones (12‐16) cabled independently to a common central node. The design allows for variable array configurations and deployments in three modes: experimental (off boats and piers), autonomous, and cabled. An application of HEAR is illustrated by the results from a deployment at Makai Research Pier, Oahu, Hawaii. In this deployment, HEAR was configured as a long-baseline range of two volumetric subarrays to study passive acoustic tracking capabilities in a shallow water environment.


2008 ◽  
Vol 124 (3) ◽  
pp. EL157-EL162 ◽  
Author(s):  
D. P. Knobles ◽  
S. M. Joshi ◽  
R. D. Gaul ◽  
H. C. Graber ◽  
N. J. Williams

1995 ◽  
Vol 69 (2) ◽  
pp. 376-380 ◽  
Author(s):  
Daniel B. Blake ◽  
Keith Sturgeon

Aldebarania arenitea (Astropectinidae; Asteroidea; Echinodermata) is described from the Rocky Point Member of the Maastrichtian (Upper Cretaceous) Peedee Formation of North Carolina. A turbulent, shallow-water environment is suggested by sedimentary features, a diverse marine fauna, and the morphology of Aldebarania. Aldebarania appears to be a partial ecological equivalent of living Astropecten and Luidia; however, phylogenetic relationships within the Astropectinidae are unstudied and the origin of similarities is unknown.


Author(s):  
Zhiyi Zhou ◽  
Gongzheng Yin ◽  
Ronald P. Tripp

ABSTRACTTwenty-seven species assigned to 20 genera of trilobites are described from Feilaishi in Guizhou Province, the type section of the Shihtzupu Formation in S W China. They occur in association with a sparse graptolite fauna including Glyptograptus teretiusculus. Eleven taxa are recorded here for the first time. Much new morphological information is provided regarding previously known species and 3 lectotypes are selected. The trilobites are largely endemic and indicate a quiet and comparatively shallow water environment


2016 ◽  
Author(s):  
Mirko Mustonen ◽  
Aleksander Klauson ◽  
Janek Laanearu ◽  
Madis Ratassepp ◽  
Thomas Folegot ◽  
...  

2021 ◽  
Vol 11 (24) ◽  
pp. 11631
Author(s):  
Xiuwei Chai ◽  
Jingyuan Liu ◽  
Yu Zhou

This study is aimed at numerically investigating the cnoidal wave-induced dynamics characteristics and the liquefaction process in a loosely deposited seabed floor in a shallow water environment. To achieve this goal, the integrated model FSSI-CAS 2D is taken as the computational platform, and the advanced soil model Pastor–Zienkiewicz Mark III is utilized to describe the complicated mechanical behavior of loose seabed soil. The computational results show that a significant lateral spreading and vertical subsidence could be observed in the loosely deposited seabed floor due to the gradual loss of soil skeleton stiffness caused by the accumulation of pore pressure. The accumulation of pore pressure in the loose seabed is not infinite but limited by the liquefaction resistance line. The seabed soil at some locations could be reached to the full liquefaction state, becoming a type of heavy fluid with great viscosity. Residual liquefaction is a progressive process that is initiated at the upper part of the seabed floor and then enlarges downward. For waves with great height in shallow water, the depth of the liquefaction zone will be greatly overestimated if the Stokes wave theory is used. This study can enhance the understanding of the characteristics of the liquefaction process in a loosely deposited seabed under coastal shallow water and provide a reference for engineering activities.


1990 ◽  
Vol 216 ◽  
pp. 285-298 ◽  
Author(s):  
Xiaowei S. He ◽  
John G. Georgiadis

We use weakly nonlinear analysis via a two-parameter expansion to study bifurcation of conduction into cellular convection of an internally heated fluid in a porous medium that forms a horizontal layer between two isothermal walls. The Darcy–Boussinesq model of convection is enhanced by including two nonlinear terms: (i) quadratic (Forchheimer) drag; and (ii) hydrodynamic dispersion enhancement of the thermal conductivity described by a weak linear relationship between effective conductivity and local amplitude of filtration velocity. The impact of the second term on the shape of the bifurcation curve for two-dimensional rolls is profound in the presence of uniform volumetric heating. The resulting bifurcation structure is unlike any pitchfork bifurcations typical of the classical Bénard problem. Although direct experimental validation of the novel bifurcation is not available, we would like to register it as an alternative or a supplement to models of small imperfections, and as an attempt to account for the scatter of observed critical values for the first bifurcation.


Sign in / Sign up

Export Citation Format

Share Document