scholarly journals Research on Electromagnetic-Radiated Emission of Multi-in-One Electric Drive System

2021 ◽  
Vol 12 (3) ◽  
pp. 127
Author(s):  
Ruoxi Tan ◽  
Shangbin Ye ◽  
Cheng Yu ◽  
Chenghao Deng ◽  
Anjian Zhou

The strong electromagnetic interference produced by the electric drive system is the main factor that leads to the strong radiated emission of electric vehicles. It is very important to study the influence of the electric drive system on vehicle-radiated emission by taking the common-mode current of the electric drive system as the interference source. In this paper, the conducted emission model of the electric drive system is proposed, and the common-mode current is calculated by this model. The influence of filter on the common-mode interference current of HVDC cables is calculated and analyzed, and then the radiating antenna effect model of HVDC cables is established. Based on this, a vehicle-level radiated emission simulation model including an electric drive system and DC cables was established. The effectiveness of the conducted emission model was verified by experiments. The effects of different shielding structures on the shielding efficiency of HVDC cables were compared. Quantitative guidance for EMI suppression design of multi-in-one electric drive system design can be provided by the model in this paper.

2021 ◽  
Vol 13 (1) ◽  
pp. 5
Author(s):  
Shang Jiang ◽  
Yuan Wang

Common-mode voltage can be reduced effectively by optimized modulation methods without increasing additional costs. However, the existing methods cannot satisfy the requirements of the vehicular electric-drive application. This paper optimizes the tri-state voltage modulation method to reduce the common-mode voltage for vehicular electric drive system applications. Firstly, the discontinuous switching issue during sector transition is analyzed. Under the limit of two switching times in one period, multiple alignments combination is proposed to address that issue. Secondly, the zero-voltage time intervals in different modulation ranges are explored. This paper proposes an unsymmetric translation method to reconstruct the voltage vector, and then the minimum zero-voltage time interval is controlled to enough value for safe switching. Finally, the proposed methods have been validated through experiments on a vehicular electric drive system. The results show that the common-mode voltage can be reduced effectively in the whole range with the optimized tri-state voltage modulation method.


2013 ◽  
Vol 773 ◽  
pp. 3-8
Author(s):  
Yan Jie Guo ◽  
Li Fang Wang ◽  
Cheng Lin Liao

This paper represents the conducted electromagnetic interference (EMI) characteristics of the electric drive system in electric vehicles, based on the typical vehicle driving circles. Firstly, the typical vehicle driving circles are introduced, such as Economic Commission of Europe-15 (ECE-15), Extra Urban Driving Cycle (EUDC) and so on. Also, the relationships between motor speed, torque and vehicle speed are calculated according to the mechanical properties of the vehicle. Then, the simulation and experiment platforms are established considering the motor speed and torque as reference inputs. Finally, the dynamic EMI of power electronics device switching processes, system dynamic differential mode (DM) and common mode (CM) EMI are analyzed through the simulation and experiment results.


2021 ◽  
Vol 4 (1) ◽  
pp. 1-2
Author(s):  
Xiangyang Xu ◽  
Guangyu Tian ◽  
Hui Liu

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 282
Author(s):  
Seon-Ik Hwang ◽  
Jang-Mok Kim

The common-mode voltage (CMV) generated by the switching operation of the pulse width modulation (PWM) inverter leads to bearing failure and electromagnetic interference (EMI) noises. To reduce the CMV, it is necessary to reduce the magnitude of dv/dt and change the frequency of the CMV. In this paper, the range of the CMV is reduced by using opposite triangle carrier for ABC and XYZ winding group, and the change in frequency in the CMV is reduced by equalizing the dwell time of the zero voltage vector on ABC and XYZ winding group of dual three phase motor.


Sign in / Sign up

Export Citation Format

Share Document