scholarly journals Research on Hydrogen Consumption and Driving Range of Hydrogen Fuel Cell Vehicle under the CLTC-P Condition

2021 ◽  
Vol 13 (1) ◽  
pp. 9
Author(s):  
Zhijie Duan ◽  
Nan Mei ◽  
Lili Feng ◽  
Shuguang Yu ◽  
Zengyou Jiang ◽  
...  

Hydrogen consumption and mileage are important economic indicators of fuel cell vehicles. Hydrogen consumption is the fundamental reason that restricts mileage. Since there are few quantitative studies on hydrogen consumption during actual vehicle operation, the high cost of hydrogen consumption in outdoor testing makes it impossible to guarantee the accuracy of the test. Therefore, this study puts forward a test method based on the hydrogen consumption of fuel cell vehicles under CLTC-P operating conditions to test the hydrogen consumption of fuel cell vehicles per 100 km. Finally, the experiment shows that the mileage calculated by hydrogen consumption has a higher consistency with the actual mileage. Based on this hydrogen consumption test method, the hydrogen consumption can be accurately measured, and the test time and cost can be effectively reduced.

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5843 ◽  
Author(s):  
Olivier Bethoux

Driven by a small number of niche markets and several decades of application research, fuel cell systems (FCS) are gradually reaching maturity, to the point where many players are questioning the interest and intensity of its deployment in the transport sector in general. This article aims to shed light on this debate from the road transport perspective. It focuses on the description of the fuel cell vehicle (FCV) in order to understand its assets, limitations and current paths of progress. These vehicles are basically hybrid systems combining a fuel cell and a lithium-ion battery, and different architectures are emerging among manufacturers, who adopt very different levels of hybridization. The main opportunity of Fuel Cell Vehicles is clearly their design versatility based on the decoupling of the choice of the number of Fuel Cell modules and hydrogen tanks. This enables manufacturers to meet various specifications using standard products. Upcoming developments will be in line with the crucial advantage of Fuel Cell Vehicles: intensive use in terms of driving range and load capacity. Over the next few decades, long-distance heavy-duty vehicles and fleets of taxis or delivery vehicles will develop based on range extender or mild hybrid architectures and enable the hydrogen sector to mature the technology from niche markets to a large-scale market.


2020 ◽  
Vol 218 ◽  
pp. 02037
Author(s):  
Liqing Shao ◽  
Xudong Li ◽  
Shouxi Wu

Developing hydrogen fuel cell vehicle is an important direction for the transformation and upgrading of automobile industry, but its current development is not clear yet. This paper uses a discrete selection model and a system dynamics model to analyze the key factors affecting the sales of hydrogen fuel cell vehicles, and analyze the vehicle purchasing behavior of consumers. The medium and long-term sales volume of hydrogen fuel cell vehicles is predicted in various typical scenarios. The forecast results show that the government subsidies and changes in the number of hydrogen refueling stations have a great influence on the medium and long-term sales of hydrogen fuel cells. The energy prices and the breakthrough in the core technologies of key components also have a certain influence on future sales.


2014 ◽  
Vol 528 ◽  
pp. 258-263
Author(s):  
Hong Jun Ni ◽  
Shuai Shua Lv ◽  
Yi Pei ◽  
Lin Fei Chen

Fuel Cell Vehicle (FCV) is the ideal solution for Sustainable Mobility in the future. A new type of hydrogen fuel battery –Lithium-ion battery hybrid power system was introduced; The current hydrogen fuel cell vehicles power system and automotive hydrogen storage system at home and abroad are summarized. Energy efficiency factors as well as means to improve energy efficiency of fuel cell hybrid system were discussed.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7856
Author(s):  
Zhijie Duan ◽  
Luo Zhang ◽  
Lili Feng ◽  
Shuguang Yu ◽  
Zengyou Jiang ◽  
...  

With the increase of the requirement for the economy of vehicles and the strengthening of the concept of environmental protection, the development of future vehicles will develop in the direction of high efficiency and cleanliness, and the current power system of vehicles based on traditional fossil fuels will gradually transition to hybrid power. As an essential technological direction for new energy vehicles, the development of fuel cell passenger vehicles is of great significance in reducing transportation carbon emissions, stabilizing energy supply, and maintaining the sustainable development of the automotive industry. To study the fuel economy of a passenger car with the proton exchange membrane fuel cell (PEMFC) during the operating phase, two typical PEMFC passenger cars, test vehicles A and B, were compared and analyzed. The hydrogen consumption and hydrogen emission under two operating conditions, namely the different steady-state power and the Chinese Vehicle Driving Conditions-Passenger Car cycle, were tested. The test results show the actual hydrogen consumption rates of vehicle A and vehicle B are 9.77 g/kM and 8.28 g/kM, respectively. The average hydrogen emission rates for vehicle A and vehicle B are 1.56 g/(kW·h) and 5.40 g/(kW·h), respectively. By comparing the hydrogen purge valve opening time ratio, the differences between test vehicles A and B in control strategy, hydrogen consumption, and emission rate are analyzed. This study will provide reference data for China to study the economics of the operational phase of PEMFC vehicles.


2014 ◽  
Vol 1006-1007 ◽  
pp. 1199-1202
Author(s):  
Yuan Ren ◽  
Zhi Dan Zhong ◽  
Zhi Wen Zhang

Current development in fuel cells and hydrogen fuel cells vehicles are first described in the paper, and then the paper gives up-to-date review of hydrogen fuel cell vehicle technological status and hydrogen infrastructure. Then the paper analysis barriers in hydrogen fuel cell vehicle commercialization and the cost reduction challenges especially in the material for catalyst and operational condition. Then in the end this paper gives the hydrogen fuel cell vehicles prospects and outlook.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Dong Hao ◽  
Yanyi Zhang ◽  
Renguang Wang ◽  
Xiaobing Wang ◽  
Kai Zhu ◽  
...  

At present, there are two main standards, ISO 23828 : 2013 and SAE J 2572–2014, which prescribe the hydrogen consumption test using the pressure method, gravimetric method, and flow method. However, these methods do not meet the test requirements for electric energy consumption and the range of plug-in hybrid fuel cell vehicles (FCVs) which are the main technical considerations in China and Europe. In this paper, a new test method for the hydrogen consumption, electric energy consumption, and range of FCVs is proposed without the use of additional hydrogen supply, measurement instruments, or energy consumption correction, which can improve the operability of the test and avoid the conversion between electric energy and hydrogen. One plug-in hybrid FCV and one nonplug-in hybrid FCV were tested using the proposed method. The results show that the new method meets the requirements of fuel economy test for FCVs with hydrogen consumption rate, electric energy consumption rate, the range for plug-in hybrid FCVs, hydrogen consumption rate, and the range for nonplug-in FCVs.


2021 ◽  
Vol 489 ◽  
pp. 229450
Author(s):  
Sahar Foorginezhad ◽  
Masoud Mohseni-Dargah ◽  
Zahra Falahati ◽  
Rouzbeh Abbassi ◽  
Amir Razmjou ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 393
Author(s):  
Zhemin Du ◽  
Congmin Liu ◽  
Junxiang Zhai ◽  
Xiuying Guo ◽  
Yalin Xiong ◽  
...  

Nowadays, we face a series of global challenges, including the growing depletion of fossil energy, environmental pollution, and global warming. The replacement of coal, petroleum, and natural gas by secondary energy resources is vital for sustainable development. Hydrogen (H2) energy is considered the ultimate energy in the 21st century because of its diverse sources, cleanliness, low carbon emission, flexibility, and high efficiency. H2 fuel cell vehicles are commonly the end-point application of H2 energy. Owing to their zero carbon emission, they are gradually replacing traditional vehicles powered by fossil fuel. As the H2 fuel cell vehicle industry rapidly develops, H2 fuel supply, especially H2 quality, attracts increasing attention. Compared with H2 for industrial use, the H2 purity requirements for fuel cells are not high. Still, the impurity content is strictly controlled since even a low amount of some impurities may irreversibly damage fuel cells’ performance and running life. This paper reviews different versions of current standards concerning H2 for fuel cell vehicles in China and abroad. Furthermore, we analyze the causes and developing trends for the changes in these standards in detail. On the other hand, according to characteristics of H2 for fuel cell vehicles, standard H2 purification technologies, such as pressure swing adsorption (PSA), membrane separation and metal hydride separation, were analyzed, and the latest research progress was reviewed.


2020 ◽  
Vol 89 ◽  
pp. 102897 ◽  
Author(s):  
Scott Kelley ◽  
Aimee Krafft ◽  
Michael Kuby ◽  
Oscar Lopez ◽  
Rhian Stotts ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document