scholarly journals Predictive value of corrected TIMI frame count (cTFC) for fractional flow reserve (FFR) results: an easy way for patient selection

2020 ◽  
Author(s):  
Muhammet Cebeci ◽  
Mustafa Karanfil ◽  
Serkan Topaloğlu
2021 ◽  
pp. 028418512098397
Author(s):  
Yang Li ◽  
Hong Qiu ◽  
Zhihui Hou ◽  
Jianfeng Zheng ◽  
Jianan Li ◽  
...  

Background Deep learning (DL) has achieved great success in medical imaging and could be utilized for the non-invasive calculation of fractional flow reserve (FFR) from coronary computed tomographic angiography (CCTA) (CT-FFR). Purpose To examine the ability of a DL-based CT-FFR in detecting hemodynamic changes of stenosis. Material and Methods This study included 73 patients (85 vessels) who were suspected of coronary artery disease (CAD) and received CCTA followed by invasive FFR measurements within 90 days. The diagnostic accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristics curve (AUC) were compared between CT-FFR and CCTA. Thirty-nine patients who received drug therapy instead of revascularization were followed for up to 31 months. Major adverse cardiac events (MACE), unstable angina, and rehospitalization were evaluated and compared between the study groups. Results At the patient level, CT-FFR achieved 90.4%, 93.6%, 88.1%, 85.3%, and 94.9% in accuracy, sensitivity, specificity, PPV, and NPV, respectively. At the vessel level, CT-FFR achieved 91.8%, 93.9%, 90.4%, 86.1%, and 95.9%, respectively. CT-FFR exceeded CCTA in these measurements at both levels. The vessel-level AUC for CT-FFR also outperformed that for CCTA (0.957 vs. 0.599, P < 0.0001). Patients with CT-FFR ≤0.8 had higher rates of rehospitalization (hazard ratio [HR] 4.51, 95% confidence interval [CI] 1.08–18.9) and MACE (HR 7.26, 95% CI 0.88–59.8), as well as a lower rate of unstable angina (HR 0.46, 95% CI 0.07–2.91). Conclusion CT-FFR is superior to conventional CCTA in differentiating functional myocardial ischemia. In addition, it has the potential to differentiate prognoses of patients with CAD.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
K T Madsen ◽  
K T Veien ◽  
B L Noergaard ◽  
P Larsen ◽  
L Deibjerg ◽  
...  

Abstract Introduction Coronary CT angiography (CTA) derived fractional flow reserve (FFRct) is increasingly used for guiding referral to invasive procedures in patients with stable chest pain. However, optimal interpretation of FFRct-analysis in terms of location and threshold of applied FFRct-values is unclear. Purpose To evaluate the clinical performance of various vessel-specific physiological FFRct derived measures of ischemia for prediction of standard of care guided coronary revascularization in patients with stable chest pain and coronary artery disease as determined by coronary CTA. Methods Retrospective study in patients with stable chest pain referred for coronary angiography based on coronary CTA. Standard acquired coronary CTA data sets were transmitted for core-laboratory analysis at HeartFlow. Any FFRct value in the major coronary arteries ≥1.8 mm in diameter, including side branches, were registered. Lesions were categorized as positive for ischemia using 6 different algorithms: Lowest in vessel FFRct-value (1) ≤0.75 or (2) ≤0.80; 2 cm distal-to-lesion FFRct-value (3) ≤0.75 or (4) ≤0.80; ΔFFRct (5) ≥0.06 or a combination of 2 and 5. The personnel responsible for downstream patient management had no information regarding FFRct test results. Results A total of 172 patients were included. Revascularization was performed in 62 (35%) patients. The diagnostic performance of different FFRct algorithms for predicting standard of care guided coronary revascularization is shown in the Table. Revascularization Predictions by FFRct N=172 Diagnostic performance FFRCT false negative FFRCT false positive Values given as (%) No. of revasc vessels No. of abnormal vessels FFRCT Algorithm Sens Spec PPV NPV Acc 1 2 3 1 2 3 Distal FFRCT ≤0.75 77 68 58 84 72 12 2 0 29 5 1 Distal FFRCT ≤0.80 92 43 48 90 61 5 0 0 40 20 3 Lesion-specific FFRCT ≤0.75 68 86 74 83 80 17 3 0 12 3 0 Lesion-specific FFRCT ≤0.80 82 78 68 89 80 10 2 0 21 3 1 ΔFFRCT ≥0.06 98 36 47 98 59 1 0 0 51 19 0 Combinationa 92 54 53 92 67 5 0 0 39 12 0 aDistal FFRCT ≤0.80 and ΔFFRCT ≥0.06. Sens = sensitivity; Spec = specificity; PPV = positive predictive value; NPV = negative predictive value; Acc = accuracy; FFRCT = fractional flow reserve derived from coronary CTA; ΔFFRCT = difference between FFRCT-value immediately proximal and distal to lesion; Revasc = revascularized. Conclusion The diagnostic performance of FFRct in terms of predicting standard of care guided coronary revascularization is dependent on the applied algorithm for interpretation of the FFRct-analysis.


2019 ◽  
Vol 116 (7) ◽  
pp. 1349-1356 ◽  
Author(s):  
Jianping Li ◽  
Yanjun Gong ◽  
Weimin Wang ◽  
Qing Yang ◽  
Bin Liu ◽  
...  

Abstract Aims Conventional fractional flow reserve (FFR) is measured invasively using a coronary guidewire equipped with a pressure sensor. A non-invasive derived FFR would eliminate risk of coronary injury, minimize technical limitations, and potentially increase adoption. We aimed to evaluate the diagnostic performance of a computational pressure-flow dynamics derived FFR (caFFR), applied to coronary angiography, compared to invasive FFR. Methods and results The FLASH FFR study was a prospective, multicentre, single-arm study conducted at six centres in China. Eligible patients had native coronary artery target lesions with visually estimated diameter stenosis of 30–90% and diagnosis of stable or unstable angina pectoris. Using computational pressure-fluid dynamics, in conjunction with thrombolysis in myocardial infarction (TIMI) frame count, applied to coronary angiography, caFFR was measured online in real-time and compared blind to conventional invasive FFR by an independent core laboratory. The primary endpoint was the agreement between caFFR and FFR, with a pre-specified performance goal of 84%. Between June and December 2018, matched caFFR and FFR measurements were performed in 328 coronary arteries. Total operational time for caFFR was 4.54 ± 1.48 min. caFFR was highly correlated to FFR (R = 0.89, P = 0.76) with a mean bias of −0.002 ± 0.049 (95% limits of agreement −0.098 to 0.093). The diagnostic performance of caFFR vs. FFR was diagnostic accuracy 95.7%, sensitivity 90.4%, specificity 98.6%, positive predictive value 97.2%, negative predictive value 95.0%, and area under the receiver operating characteristic curve of 0.979. Conclusions Using wire-based FFR as the reference, caFFR has high accuracy, sensitivity, and specificity. caFFR could eliminate the need of a pressure wire, technical error and potentially increase adoption of physiological assessment of coronary artery stenosis severity. Clinical Trial Registration URL: http://www.chictr.org.cn Unique Identifier: ChiCTR1800019522.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
A R Ihdayhid ◽  
B L Norgaard ◽  
N Khav ◽  
S Gaur ◽  
J Leipsic ◽  
...  

Abstract Background Fractional flow reserve derived from CT-coronary angiography (FFRCT) accurately identifies ischaemic vessels which may be associated with clinical outcomes. Its predictive value in grey zone FFRCT values between 0.7–0.8 is not defined. The technique permits estimation of burden of ischaemic myocardium subtended by FFRCT significant vessels. Purpose To evaluate the prognostic value and incremental benefit of FFRCT defined ischaemic myocardial burden when compared to FFRCT alone. Methods This is a subanalysis of NXT (Analysis of Coronary Blood-Flow Using CTA:Next-Steps), a prospective study of stable coronary artery disease (CAD) patients referred for invasive angiography (ICA) undergoing invasive FFR, CTA and FFRCT in whom treating physicians had been blinded to FFRCT results. Primary endpoint, defined as a composite of non-fatal myocardial infarction and any revascularisation, was determined in 206 patients (age 64±9.5 years, 64% male) and 618 vessels. Burden of ischaemic myocardium was defined as percentage of myocardium subtended beyond the point at which a vessel's FFRCT becomes ≤0.8 as estimated by APPROACH score (FFRCT-APPROACH). In significant FFRCT vessels, the predictive value and incremental benefit of FFRCT-APPROACH was compared with significant FFRCT (≤0.8) for primary endpoint as measured by area under the receiver operator characteristic curve (AUC). Significant ischaemic myocardial burden was defined as >10%. The incidence and relationship between the primary endpoint with each 10% increase in FFRCT-APPROACH and 0.05-unit decrease in FFRCT values ≤0.8 was determined. Results Significant FFRCT was identified in 52.9% of patients (109/206) and 29.3% of vessels (181/618). At 4.7 years median follow-up the incidence of the primary endpoint in vessels with significant FFRCT-APPROACH was 58.9% (96/163) which was comparable with vessels with significant FFRCT (55.2%,100/181; P=0.50). The predictive value of FFRCT-APPROACH for the primary endpoint was comparable with FFRCT (AUC 0.72 [95% CI 0.65–0.79] vs 0.71 [0.63–0.78], P=0.79). When combined, there was significant predictive improvement compared with FFRCT alone (AUC 0.77 [0.70–0.84]; P=0.01). The largest incremental benefit upon FFRCT was observed in vessels with FFRCT values in the grey zone between 0.70–0.80 (AUC 0.76 [0.65–0.86] vs 0.62 [0.48–0.74]; P<0.01). Each 10% increase in FFRCT-APPROACH (Adjusted-HR 1.36; 95% CI 1.16–1.60; P<0.001) and each 0.05-unit FFRCT decrease (Adjusted-HR 1.42; 1.19–1.70; P<0.001) were independently associated with significant increase in the incidence of the primary-endpoint. Conclusion In patients with stable CAD referred for ICA, the burden of ischaemic myocardium subtended by FFRCT significant vessels predicted non-fatal myocardial infarction and future revascularisation. This provided significant incremental benefit when used in combination with FFRCT particularly at FFRCT values in the grey zone between 0.7 to 0.8.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Juan Casanova-Sandoval ◽  
Diego Fernández-Rodríguez ◽  
Imanol Otaegui ◽  
Teresa Gil Jiménez ◽  
Marcos Rodríguez-Esteban ◽  
...  

Background. The resting full‐cycle ratio (RFR) is a novel resting index which in contrast to the gold standard (fractional flow reserve (FFR)) does not require maximum hyperemia induction. The objectives of this study were to evaluate the agreement between RFR and FFR with the currently recommended thresholds and to design a hybrid RFR-FFR ischemia detection strategy, allowing a reduction of coronary vasodilator use. Materials and Methods. Patients subjected to invasive physiological study in 9 Spanish centers were prospectively recruited between April 2019 and March 2020. Sensitivity and specificity studies were made to assess diagnostic accuracy between the recommended levels of RFR ≤0.89 and FFR ≤0.80 (primary objective) and to determine the RFR “grey zone” in order to define a hybrid strategy with FFR affording 95% global agreement compared with FFR alone (secondary objective). Results. A total of 380 lesions were evaluated in 311 patients. Significant correlation was observed (R2 = 0.81; P < 0.001 ) between the two techniques, with 79% agreement between RFR ≤ 0.89 and FFR ≤ 0.80 (positive predictive value, 68%, and negative predictive value, 80%). The hybrid RFR-FFR strategy, administering only adenosine in the “grey zone” (RFR: 0.86 to 0.92), exhibited an agreement of over 95% with FFR, with high predictive values (positive predictive value, 91%, and negative predictive value, 92%), reducing the need for vasodilators by 58%. Conclusions. Dichotomous agreement between RFR and FFR with the recommended thresholds is significant but limited. The adoption of a hybrid RFR-FFR strategy affords very high agreement, with minimization of vasodilator use.


2014 ◽  
Vol 7 (7) ◽  
pp. 768-777 ◽  
Author(s):  
Shengxian Tu ◽  
Emanuele Barbato ◽  
Zsolt Köszegi ◽  
Junqing Yang ◽  
Zhonghua Sun ◽  
...  

2021 ◽  
pp. 153537022110271
Author(s):  
Jincheng Liu ◽  
Bao Li ◽  
Junling Ma ◽  
Xue Wang ◽  
Liyuan Zhang ◽  
...  

This study aimed to examine whether the ratio of vessel-specific coronary arterial lumen volume to the fraction of myocardial mass (VR/MR) affects myocardial ischemia. We proposed a calculation method for VR/MR, and compared the ratio of total epicardial coronary arterial lumen volume to left ventricular myocardial mass (V/M) with VR/MR in predicting myocardial ischemia. VR/MR and V/M were computed using data from 205 patients with 241 stenosis vessel who underwent coronary computed tomography angiography (CTA), quantitative coronary angiography, and fractional flow reserve. The vessel-specific coronary arterial lumen volume (VR) was obtained from CTA by segmenting the coronary arterial lumen volume, while the vessel-specific fraction of myocardial mass (MR) was obtained by allometric scaling. The VR/MR was then calculated. The cut-off values of V/M (23.55 mm3/g) and VR/MR (12.98 mm3/g) were used to define equal groups of ischemic and non-ischemic patients, respectively. Using these cut-off values, the accuracy, specificity, sensitivity, positive predictive value, and negative predictive value of V/M were 60%, 76%, 45%, 57%, and 66%, and of VR/MR were 87%, 92%, 77%, 89%, and 83%, respectively. Patients have different VR/MR values in different stenotic coronary arteries. Clinically, VR/MR is a quantitative indicator of the risk of myocardial ischemia.


2021 ◽  
Vol Volume 17 ◽  
pp. 817-831
Author(s):  
Joyce Peper ◽  
Leonie M Becker ◽  
Jan-Peter van Kuijk ◽  
Tim Leiner ◽  
Martin J Swaans

Kardiologiia ◽  
2021 ◽  
Vol 61 (1) ◽  
pp. 4-11
Author(s):  
Yu. A. Omarov ◽  
T. N. Veselova ◽  
R. M. Shakhnovich ◽  
T. S. Sukhinina ◽  
N. S. Zhukova ◽  
...  

Aim      To evaluate the diagnostic accuracy of cardiac perfusion computed tomography (PCT) with transesophageal electrocardiostimulation (TE ECS) for detection of ischemia in patients with borderline coronary stenosis (50–75 %) compared to measurements of fractional flow reserve (FFR).Material and methods  The study included 25 patients with borderline (50–75 %) coronary stenosis as per data of computed tomography angiography (CTA) or coronary angiography (CAG). Later the patients underwent invasive measurement of FFR and cardiac PCT on a 320-row detector tomograph in combination with the TE ECS stress test.  FFR values <0.8 indicated the hemodynamic significance of stenosis. Myocardial perfusion was evaluated visually based on consensus of two experts.Results All patients completed the study protocol. Cardiac pacing duration was 6 min for all patients. Four patients required intravenous administration of atropine sulphate. PCT with TE ECS detected significant for FFR stenoses with sensitivity, specificity, and predictive value of a positive result and predictive value for a negative result of 47, 90, 87, and 53 %, respectively.Conclusion      PCT with TE ECS in combination with CTA can be considered as an informative method for simultaneous evaluation of the condition of coronary arteries and detection of myocardial ischemia. This method is particularly relevant for assessing the hemodynamic significance of borderline coronary stenoses.


Sign in / Sign up

Export Citation Format

Share Document