scholarly journals Accuracy of computational pressure-fluid dynamics applied to coronary angiography to derive fractional flow reserve: FLASH FFR

2019 ◽  
Vol 116 (7) ◽  
pp. 1349-1356 ◽  
Author(s):  
Jianping Li ◽  
Yanjun Gong ◽  
Weimin Wang ◽  
Qing Yang ◽  
Bin Liu ◽  
...  

Abstract Aims Conventional fractional flow reserve (FFR) is measured invasively using a coronary guidewire equipped with a pressure sensor. A non-invasive derived FFR would eliminate risk of coronary injury, minimize technical limitations, and potentially increase adoption. We aimed to evaluate the diagnostic performance of a computational pressure-flow dynamics derived FFR (caFFR), applied to coronary angiography, compared to invasive FFR. Methods and results The FLASH FFR study was a prospective, multicentre, single-arm study conducted at six centres in China. Eligible patients had native coronary artery target lesions with visually estimated diameter stenosis of 30–90% and diagnosis of stable or unstable angina pectoris. Using computational pressure-fluid dynamics, in conjunction with thrombolysis in myocardial infarction (TIMI) frame count, applied to coronary angiography, caFFR was measured online in real-time and compared blind to conventional invasive FFR by an independent core laboratory. The primary endpoint was the agreement between caFFR and FFR, with a pre-specified performance goal of 84%. Between June and December 2018, matched caFFR and FFR measurements were performed in 328 coronary arteries. Total operational time for caFFR was 4.54 ± 1.48 min. caFFR was highly correlated to FFR (R = 0.89, P = 0.76) with a mean bias of −0.002 ± 0.049 (95% limits of agreement −0.098 to 0.093). The diagnostic performance of caFFR vs. FFR was diagnostic accuracy 95.7%, sensitivity 90.4%, specificity 98.6%, positive predictive value 97.2%, negative predictive value 95.0%, and area under the receiver operating characteristic curve of 0.979. Conclusions Using wire-based FFR as the reference, caFFR has high accuracy, sensitivity, and specificity. caFFR could eliminate the need of a pressure wire, technical error and potentially increase adoption of physiological assessment of coronary artery stenosis severity. Clinical Trial Registration URL: http://www.chictr.org.cn Unique Identifier: ChiCTR1800019522.

BMJ Open ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. e037780
Author(s):  
Soo-Hyun Kim ◽  
Si-Hyuck Kang ◽  
Woo-Young Chung ◽  
Chang-Hwan Yoon ◽  
Sang-Don Park ◽  
...  

IntroductionCoronary CT angiography (CCTA) is widely used for non-invasive coronary artery evaluation, but it is limited in identifying the nature of functional characteristics that cause ischaemia. Recent computational fluid dynamic (CFD) techniques applied to CCTA images permit non-invasive computation of fractional flow reserve (FFR), a measure of lesion-specific ischaemia. However, this technology has limitations, such as long computational time and the need for expensive equipment, which hinder widespread use.Methods and analysisThis study is a prospective, multicentre, comparative and confirmatory trial designed to evaluate the diagnostic performance of HeartMedi V.1.0, a novel CT-derived FFR measurement for the detection of haemodynamically significant coronary artery stenoses identified by CCTA, based on invasive FFR as a reference standard. The invasive FFR values ≤0.80 will be considered haemodynamically significant. The study will enrol 184 patients who underwent CCTA, invasive coronary angiography and invasive FFR. Computational FFR (c-FFR) will be analysed by CFD techniques using a lumped parameter model based on vessel length method. Blinded core laboratory interpretation will be performed for CCTA, invasive coronary angiography, invasive FFR and c-FFR. The primary objective of the study is to compare the area under the receiver–operator characteristic curve between c-FFR and CCTA to non-invasively detect the presence of haemodynamically significant coronary stenosis. The secondary endpoints include diagnostic accuracy, sensitivity, specificity, positive predictive value, negative predictive value and correlation of c-FFR with invasive FFR.Ethics and disseminationThe study has ethic approval from the ethics committee of Seoul National University Bundang Hospital (E-1709/420-001) and informed consent will be obtained for all enrolled patients. The result will be published in a peer-reviewed journal.Trial registration numberKCT0002725; Pre-results.


Author(s):  
Hyun Jung Koo ◽  
Joon-Won Kang ◽  
Soo-Jin Kang ◽  
Jihoon Kweon ◽  
June-Goo Lee ◽  
...  

Abstract Aims To evaluate the impact of coronary artery calcium (CAC) score, minimal lumen area (MLA), and length of coronary artery stenosis on the diagnostic performance of the machine-learning-based computed tomography-derived fractional flow reserve (ML-FFR). Methods and results In 471 patients with coronary artery disease, computed tomography angiography (CTA) and invasive coronary angiography were performed with fractional flow reserve (FFR) in 557 lesions at a single centre. Diagnostic performances of ML-FFR, computational fluid dynamics-based CT-FFR (CFD-FFR), MLA, quantitative coronary angiography (QCA), and visual stenosis grading were evaluated using invasive FFR as a reference standard. Diagnostic performances were analysed according to lesion characteristics including the MLA, length of stenosis, CAC score, and stenosis degree. ML-FFR was obtained by automated feature selection and model building from quantitative CTA. A total of 272 lesions showed significant ischaemia, defined by invasive FFR ≤0.80. There was a significant correlation between CFD-FFR and ML-FFR (r = 0.99, P < 0.001). ML-FFR showed moderate sensitivity and specificity in the per-patient analysis. Diagnostic performances of CFD-FFR and ML-FFR did not decline in patients with high CAC scores (CAC > 400). Sensitivities of CFD-FFR and ML-FFR showed a downward trend along with the increase in lesion length and decrease in MLA. The area under the curve (AUC) of ML-FFR (0.73) was higher than those of QCA and visual grading (AUC = 0.65 for both, P < 0.001) and comparable to those of MLA (AUC = 0.71, P = 0.21) and CFD-FFR (AUC = 0.73, P = 0.86). Conclusion ML-FFR showed comparable results to MLA and CFD-FFR for the prediction of lesion-specific ischaemia. Specificities and accuracies of CFD-FFR and ML-FFR decreased with smaller MLA and long lesion length.


2021 ◽  
Vol 8 ◽  
Author(s):  
Changling Li ◽  
Xiaochang Leng ◽  
Jingsong He ◽  
Yongqing Xia ◽  
Wenbing Jiang ◽  
...  

Background: A new method for calculating fraction flow reserve (FFR) without pressure-wire (angiography-derived FFR) based on invasive coronary angiography (ICA) images can be used to evaluate the functional problems of coronary stenosis.Objective: The aim of this study was to assess the diagnostic performance of a novel method of calculating the FFR compared to wire-based FFR using retrospectively collected data from patients with stable angina.Methods: Three hundred patients with stable angina pectoris who underwent ICA and FFR measurement were included in this study. Two ICA images with projections >25° apart at the end-diastolic frame were selected for 3D reconstruction. Then, the contrast frame count was performed in an angiographic run to calculate the flow velocity. Based on the segmented vessel, calculated velocity, and aortic pressure, AccuFFRangio distribution was calculated through the pressure drop equation.Results: Using FFR ≤ 0.8 as a reference, we evaluated AccuFFRangio performance for 300 patients with its accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Comparison of AccuFFRangio with wire-measured FFR resulted in an area under the curve (AUC) of 0.954 (per-vessel, p < 0.0001). Accuracy for AccuFFRangio was 93.7% for Pa set from measurement and 87% for Pa = 100 mmHg in this clinical study. Overall sensitivity, specificity, PPV, and NPV for per-vessel were 90, 95, 86.7, 96.3, and 57.5, 97.7, 90.2, 86.3%, respectively. Overall accuracy, sensitivity, specificity, PPV, and NPV for 2-dimensional (2D) quantitative coronary angiography (QCA) were 63.3, 42.5, 70.9, 34.7, and 77.2%, respectively. The average processing time of AccuFFRangio was 4.30 ± 1.87 min.Conclusions: AccuFFRangio computed from coronary ICA images can be an accurate and time-efficient computational tool for detecting lesion-specific ischemia of coronary artery stenosis.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
K T Madsen ◽  
K T Veien ◽  
B L Noergaard ◽  
P Larsen ◽  
L Deibjerg ◽  
...  

Abstract Introduction Coronary CT angiography (CTA) derived fractional flow reserve (FFRct) is increasingly used for guiding referral to invasive procedures in patients with stable chest pain. However, optimal interpretation of FFRct-analysis in terms of location and threshold of applied FFRct-values is unclear. Purpose To evaluate the clinical performance of various vessel-specific physiological FFRct derived measures of ischemia for prediction of standard of care guided coronary revascularization in patients with stable chest pain and coronary artery disease as determined by coronary CTA. Methods Retrospective study in patients with stable chest pain referred for coronary angiography based on coronary CTA. Standard acquired coronary CTA data sets were transmitted for core-laboratory analysis at HeartFlow. Any FFRct value in the major coronary arteries ≥1.8 mm in diameter, including side branches, were registered. Lesions were categorized as positive for ischemia using 6 different algorithms: Lowest in vessel FFRct-value (1) ≤0.75 or (2) ≤0.80; 2 cm distal-to-lesion FFRct-value (3) ≤0.75 or (4) ≤0.80; ΔFFRct (5) ≥0.06 or a combination of 2 and 5. The personnel responsible for downstream patient management had no information regarding FFRct test results. Results A total of 172 patients were included. Revascularization was performed in 62 (35%) patients. The diagnostic performance of different FFRct algorithms for predicting standard of care guided coronary revascularization is shown in the Table. Revascularization Predictions by FFRct N=172 Diagnostic performance FFRCT false negative FFRCT false positive Values given as (%) No. of revasc vessels No. of abnormal vessels FFRCT Algorithm Sens Spec PPV NPV Acc 1 2 3 1 2 3 Distal FFRCT ≤0.75 77 68 58 84 72 12 2 0 29 5 1 Distal FFRCT ≤0.80 92 43 48 90 61 5 0 0 40 20 3 Lesion-specific FFRCT ≤0.75 68 86 74 83 80 17 3 0 12 3 0 Lesion-specific FFRCT ≤0.80 82 78 68 89 80 10 2 0 21 3 1 ΔFFRCT ≥0.06 98 36 47 98 59 1 0 0 51 19 0 Combinationa 92 54 53 92 67 5 0 0 39 12 0 aDistal FFRCT ≤0.80 and ΔFFRCT ≥0.06. Sens = sensitivity; Spec = specificity; PPV = positive predictive value; NPV = negative predictive value; Acc = accuracy; FFRCT = fractional flow reserve derived from coronary CTA; ΔFFRCT = difference between FFRCT-value immediately proximal and distal to lesion; Revasc = revascularized. Conclusion The diagnostic performance of FFRct in terms of predicting standard of care guided coronary revascularization is dependent on the applied algorithm for interpretation of the FFRct-analysis.


Sign in / Sign up

Export Citation Format

Share Document