scholarly journals Three-dimensional printing of the fetal heart with complete atrio-ventricular septal defect based on ultrasound imaging data

2020 ◽  
Author(s):  
Paola Veronese ◽  
Francesco Bertelli ◽  
Claudia Cattapan ◽  
Matteo Andolfatto ◽  
Maria Teresa Gervasi ◽  
...  
Author(s):  
Paola Veronese ◽  
Francesco Bertelli ◽  
Claudia Cattapan ◽  
Matteo Andolfatto ◽  
Maria Teresa Gervasi ◽  
...  

We reconstructed and printed a 3D model of the fetal heart affected by d-transposition of the great arteries from prenatal ultrasound images. Our 3D model revealed to be very helpful in showing the basic anatomical features of fetal complex Congenital Heart Disease (CHD) and represents an interesting additional diagnostic tool to the current standard imaging armamentarium, improving the quality of prenatal parental counseling.


2016 ◽  
Vol 26 (7) ◽  
pp. 1432-1434 ◽  
Author(s):  
Khaled Hadeed ◽  
Yves Dulac ◽  
Philippe Acar

AbstractWe used three-dimensional printing technology to create an anatomical three-dimensional model of a very rare and complex cyanotic CHD in a newborn, consisting of double-outlet left ventricle, ventricular septal defect, and pulmonary stenosis. This case demonstrates how this new innovative technology allows better understanding of the anatomy in complex CHDs and permits to better plan the surgical repair.


2019 ◽  
Vol 109 (2) ◽  
pp. 166-173 ◽  
Author(s):  
A.B.V. Pettersson ◽  
M. Salmi ◽  
P. Vallittu ◽  
W. Serlo ◽  
J. Tuomi ◽  
...  

Background and Aims: Additive manufacturing or three-dimensional printing is a novel production methodology for producing patient-specific models, medical aids, tools, and implants. However, the clinical impact of this technology is unknown. In this study, we sought to characterize the clinical adoption of medical additive manufacturing in Finland in 2016–2017. We focused on non-dental usage at university hospitals. Materials and Methods: A questionnaire containing five questions was sent by email to all operative, radiologic, and oncologic departments of all university hospitals in Finland. Respondents who reported extensive use of medical additive manufacturing were contacted with additional, personalized questions. Results: Of the 115 questionnaires sent, 58 received answers. Of the responders, 41% identified as non-users, including all general/gastrointestinal (GI) and vascular surgeons, urologists, and gynecologists; 23% identified as experimenters or previous users; and 36% identified as heavy users. Usage was concentrated around the head area by various specialties (neurosurgical, craniomaxillofacial, ear, nose and throat diseases (ENT), plastic surgery). Applications included repair of cranial vault defects and malformations, surgical oncology, trauma, and cleft palate reconstruction. Some routine usage was also reported in orthopedics. In addition to these patient-specific uses, we identified several off-the-shelf medical components that were produced by additive manufacturing, while some important patient-specific components were produced by traditional methodologies such as milling. Conclusion: During 2016–2017, medical additive manufacturing in Finland was routinely used at university hospitals for several applications in the head area. Outside of this area, usage was much less common. Future research should include all patient-specific products created by a computer-aided design/manufacture workflow from imaging data, instead of concentrating on the production methodology.


2020 ◽  
pp. bmjstel-2020-000663
Author(s):  
Patrick Gallagher ◽  
Ryan Smith ◽  
Gillian Sheppard

BackgroundThere is a significant learning curve when teaching ultrasonography to medical trainees; task trainers can help learners to bridge this gap and develop their skills. Three-dimensional printing technology has the potential to be a great tool in the development of such simulators. ObjectiveThis scoping review aimed to identify what 3D-printed models have been used in ultrasound education to date, how they were created and the pros and limitations involved.DesignResearchers searched three online databases to identify 3D-printed ultrasound models used in medical education.ResultsTwelve suitable publications were identified for inclusion in this review. The models from included articles simulated largely low frequency and/or high stakes events, with many models simulating needle guidance procedures. Most models were created by using patient imaging data and a computer-aided design software to print structures directly or print casting molds. The benefits of 3D-printed educational trainers are their low cost, reproducibility, patient specificity and accuracy. The current limitations of this technology are upfront investments and a lack of optimisation of materials.ConclusionsThe use of 3D-printed ultrasound task trainers is in its infancy, and more research is needed to determine whether or not this technology will benefit medical learners in the future.


2017 ◽  
Vol 70 (16) ◽  
pp. C171-C172
Author(s):  
Dan e Mei ◽  
Qing Deng ◽  
Hongning Song ◽  
Qing Zhou ◽  
Chuangli Feng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document