scholarly journals COBERTURA E FACHADA VERDE:

2019 ◽  
Vol 8 (2) ◽  
pp. 89-100
Author(s):  
Thiago Youzi Kussaba Kayano ◽  
Nuria Perez Gallardo ◽  
Bruno César dos Santos ◽  
Mauricio Sanches Duarte Silva ◽  
Rafael Perussi ◽  
...  

Com a busca de alternativas para melhorar o conforto ambiental em ambientes construídos, os sistemas de fachadas e tetos verdes aparecem como uma opção para melhoria, em especial, do conforto térmico. Utilizando-se de um episódio climático representativo no mês de junho de 2016, analisou-se comparativamente o comportamento térmico de uma célula de teste com fachada e teto verde e uma célula de controle para avaliação do desempenho térmico em dia crítico experimental de frio. O experimento foi realizado no Centro de Recursos Hídricos e Estudos Ambientais (CRHEA) da Universidade de São Paulo (USP), em Itirapina-SP. Os resultados indicaram que a célula de teste com fachada e teto verde possui um melhor desempenho térmico em comparação à célula de controle. Palavras-chave: desempenho térmico, episódio climático representativo, comportamento térmico, fachada verde, cobertura verde. Abstract In searching for better thermal behavior alternatives in building environments green facade systems and green roofs emerge as an improvement option, particularly in thermal comfort. Using a representative climate episode to analyze the month of June of 2016 we studied the thermal performance of a green façade and green roof test cell and a control test cell in experimental critical cold day. The experiment was made in Water Resource and Environmental Studies Center (CRHEA) of University of São Paulo (USP), in Itirapina-SP. The results indicated the green wall and green roof test cell have a better thermal performance than control test cell. Keywords: Thermal performance, climatic representative episode, thermal behavior, green façade, green cover.

Urban Science ◽  
2019 ◽  
Vol 3 (2) ◽  
pp. 39
Author(s):  
Vo ◽  
Nichersu ◽  
Wendel

The usage of greenery systems as nature-based solutions to assist in urban cooling in summer time as well as urban warming in wintertime is considered a scientific validated approach in urban planning. The objective of this research is the investigation and quantification of the role of green roofs and green facade solutions concerning thermal behavior in buildings energy savings by using standardized semantic city models that allow the quantification of such measures on district and city scales. The implemented model uses standardized geospatial data based on the CityGML format, a semantic city model standard, for analysis and data storage. For storage of the thermal properties of the buildings, the behavior of its occupants as well as the sensor measurements the Energy ADE of the CityGML standard was used. A green roof/façades model was implemented to simulate the heat transfer in a building based on the heat balance principle of foliage, soil, and structural layers. This model allows analyzing the thermal influence of plant and substrate layers on the heat gains from incoming solar radiation into buildings and the heat losses. This implementation was validated for cooling solutions using monitoring data from real-time experiments during summer measurements at three locations in Germany. Results from this experiment correspond well with the findings of other relevant studies. A sensitivity analysis was conducted to test the impacts of climate, substrate and plants on the greenery layer performance.


2014 ◽  
Vol 14 (1) ◽  
pp. 5-11 ◽  
Author(s):  
Tabassom Safikhani ◽  
Aminatuzuhariah Megat Abdullah ◽  
Dilshan Remaz Ossen ◽  
Mohammad Baharvand

Abstract - Using vertical greenery systems to reduce heat transmission is becoming more common in modern architecture. Vertical greenery systems are divided into two main categories; green facades and living walls. This study aims to examine the thermal performance of vertical greenery systems in hot and humid climates. An experimental procedure was used to measure indoor temperature and humidity. These parameters were also measured for the gap between the vertical greenery systems and wall surfaces. Three boxes were used as small-scale rooms. Two boxes were provided with either a living wall or a green facade and one box did not have any greenery (benchmark). Blue Trumpet Vine was used in the vertical greenery systems. The data were recorded over the course of three sunny days in April 2013. An analyses of the results showed that the living wall and green facade reduced indoor temperature up to 4.0 °C and 3.0 °C, respectively. The living wall and green facade also reduced cavity temperatures by 8.0 °C and 6.5 °C, respectively.


2015 ◽  
Vol 9 (13) ◽  
pp. 208
Author(s):  
Christoph Maria Ravesloot

<p class="zhengwen">Because local weather conditions in moderate climates are changing constantly, heat transfer specifications of substrate and vegetation in vegetated green roofs also change accordingly. Nevertheless, it is assumed that vegetated green roofs can have a positive effect on the thermal performance of construction in winter conditions. Is there proof from scientific research and field testing for this assumption? To answer this question, research is conducted with the main research question: Which parameters defining thermal performance for vegetated green-roof construction for a moderate winter climate like that in the Netherlands can be determined from existing literature, and how do these parameters influence thermal performance? Literature research was executed on monitoring and testing of thermal specifications of vegetated green roofs. Models with physical parameters on vegetated green roofs were studied and compared. The first goal was to make a list of all physical parameters and corresponding variables valid in the Dutch moderate-winter climate. None of the models that were found in the literature seemed to cover all physical processes. These models use parameters and variables to calculate the overall u-value of substrate and vegetation. Nevertheless, one nearly complete model was used for a sensitivity test on variables. Maximum and minimum values of variables were calculated in the model to determine the influence on the outcome in terms of u-value. From this analysis, a distinction could be made between variables influencing the u-value strongly and other variables influencing the outcome weakly.</p><p class="zhengwen">The modelling showed that three variables were influencing the model calculations moderately strongly and therefore the thermal performance of the vegetated green-roof substrate and vegetation. These variables are not consistent with parameters modeling or calculating u-value in constructions. This finding means that contribution to thermal insulation by extensive vegetated green-roof substrate and vegetation in terms of u-value would be negligible. Only a small theoretical contribution to thermal insulation can be argued from weak variables. To be sure about this small theoretical contribution to the u-value of the roof construction, this u-value was used as input for energy-use calculations for residential buildings. These calculations show that such a small increase of the u-value leads to no visible reduction in energy use for heating in winter conditions. The contribution is negligible compared to the influence of the u-value from extra insulation under the roof.</p>For vegetated green roofs in such moderate winter climates as in the Netherlands, additional u-value will have to be proven specifically, because the modelling shows that, in general, no contribution to thermal insulation can be expected.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2030
Author(s):  
Mansoureh Gholami ◽  
Alberto Barbaresi ◽  
Patrizia Tassinari ◽  
Marco Bovo ◽  
Daniele Torreggiani

In urban areas, a considerable proportion of energy demand is allocated to buildings. Since rooftops constitute one-fourth of all urban surfaces, an increasing amount of attention is paid to achieving the most efficient shapes and component designs compatible with every climate and urban context, for rooftops of varying sizes. In this study, three types of rooftop technologies, namely insulated, green roof, and rooftop greenhouse, are evaluated for energy and thermal performance using computer simulations. Water surface exposure, absorption, and intrusion are the three important factors in the calculation of hygrothermal models that impact energy consumption and building envelope performance; however, a few studies are specifically focused on providing realistic results in multi-dimensional hygrothermal models and the assessment of the impact of moisture in roofing solutions. This paper aims at evaluating the performance of three different roofing technologies through a two-dimensional hygrothermal simulation in software WUFI. To accomplish this, a precise localized microclimate model of a complex urban context on the scale of a neighborhood was employed to evaluate the cooling and heating loads of the buildings, the impact of the water content in the green roof on the thermal behavior of the roof surface, and the feasibility of designing a building with nearly zero cooling needs. A two-story building in the city center of Bologna, Italy is modelled. Simulation results have shown that during the cooling period, the performance of the designed rooftop greenhouse is the most effective by 50% reduction in cooling loads. Besides, the impact of moisture in green roofs has been detected as a negative factor for thermal and energy performance of the building in the Mediterranean climate. The results ultimately highlighted the capability of passively-designed rooftop greenhouses to create a building with nearly zero cooling needs.


2019 ◽  
Vol 204 ◽  
pp. 109502 ◽  
Author(s):  
Lei Zhang ◽  
Zhichao Deng ◽  
Lisha Liang ◽  
Yu Zhang ◽  
Qinglin Meng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document