scholarly journals A hybrid nudging-ensemble Kalman filter approach to data assimilation. Part I: application in the Lorenz system

2012 ◽  
Vol 64 (1) ◽  
pp. 18484 ◽  
Author(s):  
Lili Lei ◽  
David R. Stauffer ◽  
Sue Ellen Haupt ◽  
George S. Young
Author(s):  
Sungju Moon ◽  
Jong-Jin Baik

AbstractThe feasibility of using a (3N)-dimensional generalization of the Lorenz system in testing a traditional implementation of the ensemble Kalman filter is explored through numerical experiments. The generalization extends the Lorenz system, known as the Lorenz ’63 model, into a (3N)-dimensional nonlinear system for any positive integer N. Because the extension involves inclusion of additional wavenumber modes, raising the dimension allows the system to resolve smaller-scale motions, a unique characteristic of the present generalization that can be relevant to real modeling scenarios. Model imperfections are simulated by assuming a high-dimensional generalized Lorenz system as the true system and a generalized system of dimension less than or equal to the dimension of the true system as the model system. Different scenarios relevant to data assimilation practices are simulated by varying the dimensional-differences between the model and true systems, ensemble size, and observation frequency and accuracy. It is suggested that the present generalization of the Lorenz system is an interesting and flexible tool for evaluating the effectiveness of data assimilation methods and a meaningful addition to the portfolio of testbed systems that includes the Lorenz ’63 and ’96 models, especially considering its relationship with the Lorenz ’63 model. The results presented in this study can serve as useful benchmarks for testing other data assimilation methods besides the ensemble Kalman filter.


Author(s):  
Д.А. Ростилов ◽  
М.Н. Кауркин ◽  
Р.А. Ибраев

Статья посвящена сравнению трех методов усвоения данных наблюденй: фильтр Калмана (Kalman Filter, KF), ансамблевый фильтр Калмана (Ensemble Kalman Filter, EnKF) и локальный фильтр Калмана (Local Kalman Filter, LKF). Выполнены численные эксперименты по усвоению синтетических данных этими методами в двух разных моделях, описываемых системами дифференциальных уравнений. Первая описывается одномерным линейным уравнением адвекции, а вторая - системой Лоренца. Проведено сравнение средних ошибок и времени исполнения этих методов при различных размерах модели, которые согласуются с теоретическим оценками. Показано, что вычислительная сложность ансамблевого и локального фильтров Калмана растет линейно с увеличением размера модели, в то время как у первого метода эта сложность растет со скоростью куба. Рассмотрена эффективность одной из возможных параллельных реализаций локального фильтра Калмана. The paper is devoted to the comparison of three data assimilation methods: the Kalman Filter (Kalman Filter, KF), the ensemble Kalman Filter (EnKF), and the local Kalman Filter (LKF). A number of numerical experiments on data assimilation by these methods are performed on two different models described by systems of differential equations. The first one is a simple one-dimensional linear equation of advection and the second one is the Lorenz system. The mean errors and the execution time of these assimilation methods are compared for different model sizes. The numerical results are consistent with the theoretical estimates. It is shown that the computational complexity of local and ensemble Kalman filters grows linearly with the size of the model, whereas in the classical Kalman Filter this complexity increases according to the cubic law. The efficiency of parallel implementation of the local Kalman filter is considered.


2012 ◽  
Vol 30 (6) ◽  
pp. 929-943 ◽  
Author(s):  
S. A. Bourdarie ◽  
V. F. Maget

Abstract. In this study we implement a data assimilation tool using a 3-D radiation belt model and an ensemble Kalman filter approach. High time and space reanalysis of the electron radiation belt fluxes is obtained over the time period 5 October to 25 October 1990 by combining sparse observations with the Salammbô 3-D model in an optimal way. The convergence of the ensemble Kalman filter is analyzed carefully. The risk of using a biased physical model is discussed and relative consequences are highlighted. Finally, a validation against CRRES data and major improvements compared to pure physics based model are presented.


2008 ◽  
Vol 23 (3) ◽  
pp. 357-372 ◽  
Author(s):  
Tadashi Fujita ◽  
David J. Stensrud ◽  
David C. Dowell

Abstract A simple method to assimilate precipitation data from a synthesis of radar and gauge data is developed to operate alongside an ensemble Kalman filter that assimilates hourly surface observations. The mesoscale ensemble forecast system consists of 25 members with 30-km grid spacing and incorporates variability in both initial and boundary conditions and model physical process schemes. The precipitation assimilation method only incorporates information on when and where rainfall is observed. Model temperature and water vapor mixing ratio profiles at each grid point are modified if rainfall is observed but not predicted, or if rainfall is predicted but not observed. These modifications act to either increase or decrease, respectively, the likelihood that precipitation develops at that grid point. Two cases are examined in which this technique is applied to assimilate precipitation data every 15 min from 1200 to 1800 UTC, while hourly surface observations are also assimilated at the same time using the more sophisticated ensemble Kalman filter approach. Results show that the simple method for assimilating precipitation data helps the model develop precipitation where it is observed, resulting in the precipitation area being reproduced more accurately than in the run without precipitation-data assimilation, while not negatively influencing the positive results from the surface data assimilation. Improvement is also seen in the reliability of precipitation probabilities for a 1 mm h−1 threshold after the assimilation period, indicating that assimilating precipitation data may provide improved forecasts of the mesoscale environment for a few hours.


2013 ◽  
Vol 118 (9) ◽  
pp. 3848-3868 ◽  
Author(s):  
T. Nakamura ◽  
H. Akiyoshi ◽  
M. Deushi ◽  
K. Miyazaki ◽  
C. Kobayashi ◽  
...  

Author(s):  
Nicolas Papadakis ◽  
Etienne Mémin ◽  
Anne Cuzol ◽  
Nicolas Gengembre

2016 ◽  
Vol 66 (8) ◽  
pp. 955-971 ◽  
Author(s):  
Stéphanie Ponsar ◽  
Patrick Luyten ◽  
Valérie Dulière

Sign in / Sign up

Export Citation Format

Share Document