Using the (3N)-dimensional generalized Lorenz systems as a testbed for data assimilation: The ensemble Kalman filter

Author(s):  
Sungju Moon ◽  
Jong-Jin Baik

AbstractThe feasibility of using a (3N)-dimensional generalization of the Lorenz system in testing a traditional implementation of the ensemble Kalman filter is explored through numerical experiments. The generalization extends the Lorenz system, known as the Lorenz ’63 model, into a (3N)-dimensional nonlinear system for any positive integer N. Because the extension involves inclusion of additional wavenumber modes, raising the dimension allows the system to resolve smaller-scale motions, a unique characteristic of the present generalization that can be relevant to real modeling scenarios. Model imperfections are simulated by assuming a high-dimensional generalized Lorenz system as the true system and a generalized system of dimension less than or equal to the dimension of the true system as the model system. Different scenarios relevant to data assimilation practices are simulated by varying the dimensional-differences between the model and true systems, ensemble size, and observation frequency and accuracy. It is suggested that the present generalization of the Lorenz system is an interesting and flexible tool for evaluating the effectiveness of data assimilation methods and a meaningful addition to the portfolio of testbed systems that includes the Lorenz ’63 and ’96 models, especially considering its relationship with the Lorenz ’63 model. The results presented in this study can serve as useful benchmarks for testing other data assimilation methods besides the ensemble Kalman filter.

Author(s):  
Д.А. Ростилов ◽  
М.Н. Кауркин ◽  
Р.А. Ибраев

Статья посвящена сравнению трех методов усвоения данных наблюденй: фильтр Калмана (Kalman Filter, KF), ансамблевый фильтр Калмана (Ensemble Kalman Filter, EnKF) и локальный фильтр Калмана (Local Kalman Filter, LKF). Выполнены численные эксперименты по усвоению синтетических данных этими методами в двух разных моделях, описываемых системами дифференциальных уравнений. Первая описывается одномерным линейным уравнением адвекции, а вторая - системой Лоренца. Проведено сравнение средних ошибок и времени исполнения этих методов при различных размерах модели, которые согласуются с теоретическим оценками. Показано, что вычислительная сложность ансамблевого и локального фильтров Калмана растет линейно с увеличением размера модели, в то время как у первого метода эта сложность растет со скоростью куба. Рассмотрена эффективность одной из возможных параллельных реализаций локального фильтра Калмана. The paper is devoted to the comparison of three data assimilation methods: the Kalman Filter (Kalman Filter, KF), the ensemble Kalman Filter (EnKF), and the local Kalman Filter (LKF). A number of numerical experiments on data assimilation by these methods are performed on two different models described by systems of differential equations. The first one is a simple one-dimensional linear equation of advection and the second one is the Lorenz system. The mean errors and the execution time of these assimilation methods are compared for different model sizes. The numerical results are consistent with the theoretical estimates. It is shown that the computational complexity of local and ensemble Kalman filters grows linearly with the size of the model, whereas in the classical Kalman Filter this complexity increases according to the cubic law. The efficiency of parallel implementation of the local Kalman filter is considered.


2015 ◽  
Vol 42 (16) ◽  
pp. 6710-6715 ◽  
Author(s):  
Jifu Yin ◽  
Xiwu Zhan ◽  
Youfei Zheng ◽  
Christopher R. Hain ◽  
Jicheng Liu ◽  
...  

2012 ◽  
Vol 140 (7) ◽  
pp. 2346-2358 ◽  
Author(s):  
Daniel Hodyss

Abstract A practical data assimilation algorithm is presented that explicitly accounts for skewness in the prior distribution. The algorithm operates as a global solve (all observations are considered at once) using a minimization-based approach and Schur–Hadamard (elementwise) localization. The central feature of this technique is the squaring of the innovation and the ensemble perturbations so as to create an extended state space that accounts for the second, third, and fourth moments of the prior distribution. This new technique is illustrated in a simple scalar system as well as in a Boussinesq model configured to simulate nonlinearly evolving shear instabilities (Kelvin–Helmholtz waves). It is shown that an ensemble size of at least 100 members is needed to adequately resolve the third and fourth moments required for the algorithm. For ensembles of this size it is shown that this new technique is superior to a state-of-the-art ensemble Kalman filter in situations with significant skewness; otherwise, the new algorithm reduces to the performance of the ensemble Kalman filter.


2019 ◽  
Vol 24 (1) ◽  
pp. 217-239
Author(s):  
Kristian Fossum ◽  
Trond Mannseth ◽  
Andreas S. Stordal

AbstractMultilevel ensemble-based data assimilation (DA) as an alternative to standard (single-level) ensemble-based DA for reservoir history matching problems is considered. Restricted computational resources currently limit the ensemble size to about 100 for field-scale cases, resulting in large sampling errors if no measures are taken to prevent it. With multilevel methods, the computational resources are spread over models with different accuracy and computational cost, enabling a substantially increased total ensemble size. Hence, reduced numerical accuracy is partially traded for increased statistical accuracy. A novel multilevel DA method, the multilevel hybrid ensemble Kalman filter (MLHEnKF) is proposed. Both the expected and the true efficiency of a previously published multilevel method, the multilevel ensemble Kalman filter (MLEnKF), and the MLHEnKF are assessed for a toy model and two reservoir models. A multilevel sequence of approximations is introduced for all models. This is achieved via spatial grid coarsening and simple upscaling for the reservoir models, and via a designed synthetic sequence for the toy model. For all models, the finest discretization level is assumed to correspond to the exact model. The results obtained show that, despite its good theoretical properties, MLEnKF does not perform well for the reservoir history matching problems considered. We also show that this is probably caused by the assumptions underlying its theoretical properties not being fulfilled for the multilevel reservoir models considered. The performance of MLHEnKF, which is designed to handle restricted computational resources well, is quite good. Furthermore, the toy model is utilized to set up a case where the assumptions underlying the theoretical properties of MLEnKF are fulfilled. On that case, MLEnKF performs very well and clearly better than MLHEnKF.


Author(s):  
Nicolas Papadakis ◽  
Etienne Mémin ◽  
Anne Cuzol ◽  
Nicolas Gengembre

Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1520
Author(s):  
Zheng Jiang ◽  
Quanzhong Huang ◽  
Gendong Li ◽  
Guangyong Li

The parameters of water movement and solute transport models are essential for the accurate simulation of soil moisture and salinity, particularly for layered soils in field conditions. Parameter estimation can be achieved using the inverse modeling method. However, this type of method cannot fully consider the uncertainties of measurements, boundary conditions, and parameters, resulting in inaccurate estimations of parameters and predictions of state variables. The ensemble Kalman filter (EnKF) is well-suited to data assimilation and parameter prediction in Situations with large numbers of variables and uncertainties. Thus, in this study, the EnKF was used to estimate the parameters of water movement and solute transport in layered, variably saturated soils. Our results indicate that when used in conjunction with the HYDRUS-1D software (University of California Riverside, California, CA, USA) the EnKF effectively estimates parameters and predicts state variables for layered, variably saturated soils. The assimilation of factors such as the initial perturbation and ensemble size significantly affected in the simulated results. A proposed ensemble size range of 50–100 was used when applying the EnKF to the highly nonlinear hydrological models of the present study. Although the simulation results for moisture did not exhibit substantial improvement with the assimilation, the simulation of the salinity was significantly improved through the assimilation of the salinity and relative solutetransport parameters. Reducing the uncertainties in measured data can improve the goodness-of-fit in the application of the EnKF method. Sparse field condition observation data also benefited from the accurate measurement of state variables in the case of EnKF assimilation. However, the application of the EnKF algorithm for layered, variably saturated soils with hydrological models requires further study, because it is a challenging and highly nonlinear problem.


2016 ◽  
Vol 66 (8) ◽  
pp. 955-971 ◽  
Author(s):  
Stéphanie Ponsar ◽  
Patrick Luyten ◽  
Valérie Dulière

Icarus ◽  
2010 ◽  
Vol 209 (2) ◽  
pp. 470-481 ◽  
Author(s):  
Matthew J. Hoffman ◽  
Steven J. Greybush ◽  
R. John Wilson ◽  
Gyorgyi Gyarmati ◽  
Ross N. Hoffman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document