Characterization of the planetary boundary layer during SAMUM-2 by means of lidar measurements

Tellus B ◽  
2011 ◽  
Vol 63 (4) ◽  
Author(s):  
Silke Groß ◽  
Josef Gasteiger ◽  
Volker Freudenthaler ◽  
Matthias Wiegner ◽  
Alexander Geiß ◽  
...  
Tellus B ◽  
2011 ◽  
Vol 63 (4) ◽  
pp. 695-705 ◽  
Author(s):  
Silke Groß ◽  
Josef Gasteiger ◽  
Volker Freudenthaler ◽  
Matthias Wiegner ◽  
Alexander Geiß ◽  
...  

2021 ◽  
Author(s):  
Donato Summa ◽  
Paolo Di Girolamo ◽  
Noemi Franco ◽  
Benedetto De Rosa ◽  
Fabio Madonna ◽  
...  

<p>The exchange processes between the Earth and the atmosphere play a crucial role in the development of the Planetary Boundary Layer (PBL). Different remote sensing techniques can provide PBL measurement with different spatial and temporal resolutions. Vertical profiles of atmospheric thermodynamic variables, i.e.  temperature and humidity, or wind speed, clouds and aerosols can be used as proxy to retrieve PBL height from active and passive remote sensing instruments. The University of BASILicata ground-based Raman Lidar system (BASIL) was deployed in the North-Western Mediterranean basin in the Cévennes-Vivarais site (Candillargues, Southern France, Lat: 43°37' N, Long: 4° 4' E, Elev: 1 m) and operated between 5 September and 5 November 2012, collecting more than 600 hours of measurements, distributed over 51 days and 19 intensive observation periods (IOPs). BASIL is capable to provide high-resolution and accurate measurements of atmospheric temperature and water vapour, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV. This measurement capability makes BASIL a key instrument for the characterization of the water vapour concentration. BASIL makes use of a Nd:YAG laser source capable of emitting pulses at 355, 532 and 1064 nm, with a single pulse energy at 355nm of 500 mJ [1] .In the presented research effort, water vapour concentration was  computed and used to determine the PBL height. [2]. A dynamic index  included in the European Centre for Medium-range Weather Forecasts (ECMWF) ERA5 atmospheric reanalysis (CAPE, Friction velocity, etc.) is also considered and compared with BASIL resutls. ERA5 provides hourly data on regular latitude-longitude grids at 0.25° x 0.25° resolution at 37 pressure levels [3]. ERA5 is publicly available through the Copernicus Climate Data Store (CDS, https://cds.climate.copernicus.eu).  In order to properly carry out the comparison, the nearest ERA5 grid point to the lidar site has been considered assuming the representativeness uncertainty due to the use of the nearest grid-point comparable with other methods (e.g. kriging, bilinear interpolation, etc.). More results from this  measurement  effort will  be reported and discussed at the Conference.</p><p><strong>Reference</strong></p><p>[1] Di Girolamo, Paolo, De Rosa, Benedetto, Flamant, Cyrille, Summa, Donato, Bousquet, Olivier, Chazette, Patrick, Totems, Julien, Cacciani, Marco. Water vapor mixing ratio and temperature inter-comparison results in the framework of the Hydrological Cycle in the Mediterranean Experiment—Special Observation Period 1. BULLETIN OF ATMOSPHERIC SCIENCE AND TECHNOLOGY, ISSN: 2662-1495, doi: 10.1007/s42865-020-00008-3</p><p>[2] D. Summa, P. Di Girolamo, D. Stelitano, and M. Cacciani. Characterization of the planetary boundary layer height and structure by Raman lidar: comparison of different approaches  Atmos. Meas. Tech., 6, 3515–3525, 2013 www.atmos-meas-tech.net/6/3515/2013/doi:10.5194/amt-6-3515-2013</p><p>[3] Hersbach et al. The ERA5 global reanalysis Hans  https://doi.org/10.1002/qj.3803[3]</p>


2018 ◽  
Vol 176 ◽  
pp. 06010
Author(s):  
Gregori de A. Moreira ◽  
Juan L. Guerrero-Rascado ◽  
Jose A. Benavent-Oltra ◽  
Pablo Ortiz-Amezcua ◽  
Roberto Róman ◽  
...  

The Planetary Boundary Layer (PBL) is the lowermost part of the troposphere. In this work, we analysed some high order moments and PBL height detected continuously by three remote sensing systems: an elastic lidar, a Doppler lidar and a passive Microwave Radiometer, during the SLOPE-2016 campaign, which was held in Granada from May to August 2016. This study confirms the feasibility of these systems for the characterization of the PBL, helping us to justify and understand its behaviour along the day.


2017 ◽  
Vol 17 (11) ◽  
pp. 6839-6851 ◽  
Author(s):  
Juan Antonio Bravo-Aranda ◽  
Gregori de Arruda Moreira ◽  
Francisco Navas-Guzmán ◽  
María José Granados-Muñoz ◽  
Juan Luis Guerrero-Rascado ◽  
...  

Abstract. The automatic and non-supervised detection of the planetary boundary layer height (zPBL) by means of lidar measurements was widely investigated during the last several years. Despite considerable advances, the experimental detection still presents difficulties such as advected aerosol layers coupled to the planetary boundary layer (PBL) which usually produces an overestimation of the zPBL. To improve the detection of the zPBL in these complex atmospheric situations, we present a new algorithm, called POLARIS (PBL height estimation based on lidar depolarisation). POLARIS applies the wavelet covariance transform (WCT) to the range-corrected signal (RCS) and to the perpendicular-to-parallel signal ratio (δ) profiles. Different candidates for zPBL are chosen and the selection is done based on the WCT applied to the RCS and δ. We use two ChArMEx (Chemistry-Aerosol Mediterranean Experiment) campaigns with lidar and microwave radiometer (MWR) measurements, conducted in 2012 and 2013, for the POLARIS' adjustment and validation. POLARIS improves the zPBL detection compared to previous methods based on lidar measurements, especially when an aerosol layer is coupled to the PBL. We also compare the zPBL provided by the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model with respect to the zPBL determined with POLARIS and the MWR under Saharan dust events. WRF underestimates the zPBL during daytime but agrees with the MWR during night-time. The zPBL provided by WRF shows a better temporal evolution compared to the MWR during daytime than during night-time.


2019 ◽  
Vol 99 ◽  
pp. 02005
Author(s):  
Dietrich Althausen ◽  
Silke Mewes ◽  
Birgit Heese ◽  
Julian Hofer ◽  
Yoav Schechner ◽  
...  

Monthly mean vertical profiles of aerosol type occurrences are determined from multiwavelength Raman and polarization lidar measurements above Haifa, Israel, in 2017. This contribution presents the applied methods and threshold values. The results are discussed for one example, May 2017. This month shows more often large, non-spherical particles in lofted layers than within the planetary boundary layer. Small particles are observed at higher altitudes only when they are observed in lower altitudes, too.


Sign in / Sign up

Export Citation Format

Share Document